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The task of density estimation

There are generally two distinct tasks of density estimation:

From a model

Access to unnormalized density:

π(x) ∝ L(x)π0(x)

From data

Access to data:

x (i) ∼ π

Goal
Sample from estimated distribution and/or evaluate its density
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Measure transport

ρref π

T

Building a transport map T from ρref to π, so that T♯ ρref = π enables to
efficiently sample from π.

Pushforward of density: T♯ ρref := ρ(T −1(x)) det∇T −1(x) = π̃

Pushforward of samples: T (z) ∼ π̃ with z ∼ ρref .
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Sequential measure transport

ρref ππ(1) π(2) π(3)

sequential estimation +
Measure
transport =

sequential Measure
transport (SMT)

Examples of combination of these two methods:

Denoising diffusion

Normalizing flow based as Grenioux et al. 2023; Rezende and
Mohamed 2016

Others like Cui et al. 2024; Marzouk et al. 2016
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref (T1)♯ ρref ππ(2) π(3)

VDE Variation density estimation of π(1)

f̃ (1) = argmin
f̃ ∈M

Dα

(
π(1)||f̃

)

SoS-densities forM

fA(x) =
∑(

Φ(x)⊤ai

)2
= Φ(x)⊤AΦ(x) A ⪰ 0
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref (T1)♯ ρref ππ(2) π(3)

VDE Variation density estimation of π(1)

f̃ (1) = argmin
f̃ ∈M

Dα

(
π(1)||f̃

)
SoS-densities forM

fA(x) =
∑(

Φ(x)⊤ai

)2
= Φ(x)⊤AΦ(x) A ⪰ 0

α-divergences Dα

Includes: (reversed)
KL-divergence, χ2 divergence, ...

Extension to unnormalized
densities
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref (T1)♯ ρref ππ(2) π(3)Q1

KR Build the Knothe-Rosenblatt map Q1 from π̃(1)

1 Normalize f̃ (1) to get π̃(1)

With Φ(x) orthonormal in L2µ,

πA(x) =
Φ(x)AΦ(x)

trA
µ(x).
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref (T1)♯ ρref ππ(2) π(3)Q1

KR Build the Knothe-Rosenblatt map Q1 from π̃(1)

1 Normalize f̃ (1) to get π̃(1)

2 Build marginals π(x1:k) and CDFs of marginals

Π(xk |x1:k−1) =
Π(x1:k−1, xk)
π(x1:k−1)
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ρref (T1)♯ ρref ππ(2) π(3)Q1

KR Build the Knothe-Rosenblatt map Q1 from π̃(1)

1 Normalize f̃ (1) to get π̃(1)

2 Build marginals π(x1:k) and CDFs of marginals

3 Map Q from uniform distribution to π̃(1)

Q(ξ1, . . . , ξd) =


x1
x2
...
xd

 =


Π−1(ξ1)
Π−1(ξ2|x1)
...
Π−1(ξd |x1, . . . , xd−1)
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref (T1)♯ ρref ππ(2) π(3)Q1

KR Build the Knothe-Rosenblatt map Q1 from π̃(1)

1 Normalize f̃ (1) to get π̃(1)

2 Build marginals π(x1:k) and CDFs of marginals

3 Map Q from uniform distribution to π̃(1)

4 Map Q from ρref to π̃(1)

R♯ ρref = U ⇒ (R ◦Q)♯ ρref = π̃(1)
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref T #
1 π(2)

ππ(2) π(3)T1

PB Use T1 = Q1 to simplify π(2) using a pullback (idea originally
from Cui and Dolgov 2021)

τ (2) = T ♯
1 π

(2)
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref T #
1 π(2)

ππ(2) π(3)Q2 T1

VDE on density τ (2) to get τ̃ (2)

τ̃ (2) = argmin
π̃∈M

Dα

(
T ♯
1 π

(2)||τ̃
)

KR map Q2 from τ̃ (2)

⇒ π̃(2) = (T1)♯τ̃ (2)
= (T1 ◦ Q2)♯︸ ︷︷ ︸

T2

ρref
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Proposed sequential measure transport (SMT) method

Our proposed SMT method

ρref T #
1 π(2)

ππ(2) π(3)Q2 T1

Algorithm SMT with KR maps

1: T0 = id
2: for ℓ = 1 to L do
3: PB τ (ℓ) = T ♯

ℓ−1π
(ℓ)

4: VDE to estimate τ (ℓ) by τ̃ (ℓ)

5: KR map Qℓ from τ̃ (ℓ)

6: Tℓ = Tℓ−1 ◦ Qℓ

7: end for
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Design of Bridging densities and convergence analysis

Bridging densities

t =∞ t = 0

tempering path

diffusion path

β = 0 β = 1

β = 1/8 β = 1/4

t = 0.02t = 0.1

ρref π

tempering and diffusion among most popular bridging densities

Tempering

π(ℓ)(x) = ρref(x)1−βℓπ(x)βℓ
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Design of Bridging densities and convergence analysis

Bridging densities

t =∞ t = 0

tempering path

diffusion path

β = 0 β = 1

β = 1/8 β = 1/4

t = 0.02t = 0.1

ρref π

tempering and diffusion among most popular bridging densities

Diffusion

X
(i)
tℓ = exp(−tℓ)X (i) +

√
1− exp(−2tℓ)Z (i) X (i) ∼ π,Z (i) ∼ N (0, I )
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Design of Bridging densities and convergence analysis

Bridging densities

t =∞ t = 0

tempering path

diffusion path

β = 0 β = 1

β = 1/8 β = 1/4

t = 0.02t = 0.1

ρref π

tempering and diffusion among most popular bridging densities

How to choose hyperparamters, β1, β2, ... and t1, t2, ...?

⇒ Scheduling problem (Kingma et al. 2023)
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Design of Bridging densities and convergence analysis

Bridging densities

t =∞ t = 0

tempering path

diffusion path

β = 0 β = 1

β = 1/8 β = 1/4

t = 0.02t = 0.1

ρref π

tempering and diffusion among most popular bridging densities

Let η be so that

Dα(π
(ℓ+1)||π(ℓ)) ≤ η for all ℓ = 1, . . . , L.
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Design of Bridging densities and convergence analysis

Bridging densities

t =∞ t = 0

tempering path

diffusion path

β = 0 β = 1

β = 1/8 β = 1/4

t = 0.02t = 0.1

ρref π

tempering and diffusion among most popular bridging densities

Let η be so that

Dα(π
(ℓ+1)||π(ℓ)) ≤ η for all ℓ = 1, . . . , L.

Sequences of βℓ and tℓ exists which satisfy η = O(1/L2)
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Design of Bridging densities and convergence analysis

Bridging densities – scheduling

Let ω be

Dα

(
π(ℓ)||π̃(ℓ)

)
≤ ωDα

(
π(ℓ)||π̃(ℓ−1)

)
for all ℓ = 1, . . . , L.

Proposition (informal, Zanger et al. 2024)

If ω < 1, then the estimation of π(L) is bounded with

Dα

(
π(L)||π̃(L)

)
≤ ω(1 + ϵ)

1− ω
η.

Our strategy: Equidistant changes to minimize η.

Different approach: Best for the given approximation tool to
minimize ω, see Marzouk et al. 2024.
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Numerical examples

Numerical example - SIR model

Model from epidemiology:


d
dtS = −βIS
d
dt I = βSI − γI
d
dtR = γI

Given observations of I , determine β and γ
with πprior = U([0, 2])2.

L(y |x) ∝ exp

(
− 1

2σ2

∑
i

(Iti − yi )
2

)
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

(T1)♯ ρref
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

(T2)♯ ρref
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

(T3)♯ ρref
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

(T4)♯ ρref
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

(T4)♯ ρref Unnormalized posterior
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Numerical examples

Numerical example - SIR

Legendre polynomials of deg(Φ) ≤ 6

1000 density evaluations for each VDE

I (t) S(t)
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Numerical examples

Learning from datasets - Conditional density estimation

10 runs with different split of training/validation data

Comparison with Baptista et al. 2023

SoS polynomials of dimension 8, degree ≤ 3, use of random lazy maps

Table: Comparison of negative log likelihood function for different UCI datasets
and conditional density estimation methods.

Dataset (d, N) SoS (1 sample) SoS (4 samples) ATM # seq.

Boston (12, 506) 2.8± 0.2 2.5± 0.2 2.6± 0.2 27.4± 4.2
Concrete (9, 1030) 3.4± 0.3 3.1± 0.1 3.1± 0.1 44.0± 4.8
Energy (10, 768) 2.2± 0.2 1.7± 0.2 1.5± 0.1 34.8± 6.1
Yacht (7,308) 3.4± 1.1 2.0± 0.6 0.5± 0.2 40.8± 12.7
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Numerical examples

Calibration of Ocean-Surface parametrization

Joint work with Manolis Perrot and Florian Lemarié (Perrot et al. 2025).

⇒ Parametrization of the ocean surface using 9 free parameters which
need to be calibrated.
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Numerical examples

Calibration of Ocean-Surface parametrization

2 reference trajectories

Calibration using the
temperature at
different depths

5 bridging densities

5000 density
evaluations per
estimation

Polynomials with
deg(Φ) ≤ 3 and
Putinar’s
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Numerical examples

Calibration of Ocean-Surface parametrization

Prior:

1.6 1.7

C

−400

−200

0

z
/h

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

θ

0 1

K.m.s−1×10−4

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

w′θ′

0 2

m2.s−2 ×10−3

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

k

mean

mean ± std

−5.0 −2.5 0.0

m3.s−3 ×10−5

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

w′ u
′2
2

+ 1
ρ0
w′p†′

Posterior:

1.6 1.7

C

−400

−200

0

z
/h

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

θ

−2 0

K.m.s−1×10−4

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

w′θ′

0 2

m2.s−2 ×10−3

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

k

mean

mean ± std

−5.0 −2.5 0.0

m3.s−3 ×10−5

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

w′ u
′2
2

+ 1
ρ0
w′p†′

Benjamin Zanger (INRIA) Sequential measure transport and SoS April 22, 2025 21 / 37



Application in Optimal Transport

Outline

1 Proposed sequential measure transport (SMT) method

2 Design of Bridging densities and convergence analysis

3 Numerical examples

4 Application in Optimal Transport

5 Summary & future work
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Application in Optimal Transport

Regularized Optimal Transport

Shortest path between p and q with cost c .
Kantorovich formulation:

π∗ = argmin
π∈Π(p,q)

∫
X×Y

c(x , y)dπ(x , y) + ϵ ·Dφ (π||πref)

ϵ = 10 ϵ = 0.5 ϵ = 0.03 ϵ = 0.001

Benjamin Zanger (INRIA) Sequential measure transport and SoS April 22, 2025 23 / 37



Application in Optimal Transport

Regularized Optimal Transport

Shortest path between p and q with cost c .
Kantorovich formulation:

π∗ = argmin
π∈Π(p,q)

∫
X×Y

c(x , y)dπ(x , y) + ϵ ·Dφ (π||πref)

Our idea:
Model the transport plan π using sequential measure transport:

π(ℓ) = (Tℓ−1)♯ τ
(ℓ) = (Tℓ)♯ ρref

with π(ℓ) solution to regularized OT with ϵℓ.
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Application in Optimal Transport

Regularized Optimal Transport

Shortest path between p and q with cost c .
Kantorovich formulation:

τ (ℓ) = argmin
(Tℓ−1)♯τ∈Π(p,q)

∫
X×Y

c ◦ Tℓ−1(x , y)dτ(x , y) + ϵℓ ·Dφ

(
τ ||T ♯

ℓ−1πref

)

π̃(1) T ♯
1 π

(2)

T ♯
1←

π(2)
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Application in Optimal Transport

Regularized Optimal transport

Shortest path between p and q with cost c .
Kantorovich formulation:

π(ℓ) = argmin
π∈Π(p,q)

∫
X×Y

c(x , y)dπ(x , y) + ϵℓ ·Dφ (π||πref)

Dual formulation:

argmax
u,v

∫
X
u(x)dp(x) +

∫
Y
v(y)dq(y)

− ϵℓ ·
∫
X×Y

φ†
(
u(x) + v(y)− c(x , y)

ϵℓ

)
dπref .
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Shortest path between p and q with cost c .
Kantorovich formulation:

π(ℓ) = argmin
π∈Π(p,q)

∫
X×Y

c(x , y)dπ(x , y) + ϵℓ ·Dφ (π||πref)

Dual formulation:

argmax
u,v

∫
X
u(x)dp(x) +

∫
Y
v(y)dq(y)

− ϵℓ ·
∫
X×Y

φ†
(
u(x) + v(y)− c(x , y)

ϵℓ

)
πref

(Tℓ−1)♯ρ
· d(Tℓ−1)♯ρ.
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φ†
(
u(x) + v(y)− c(x , y)

ϵℓ

)
πref

(Tℓ−1)♯ρ
· d(Tℓ−1)♯ρ.

Application of this idea in Sinkhorn algorithm: Schmitzer 2019 and Li
et al. 2023
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Summary & future work

Summary & Future work

We presented the framework of Sequential measure transport which
includes state-of-the art density estimation methods.

KR maps with SoS densities

Problem of scheduling

Unified convergence analysis for α-divergences

Challenges and open problems:

Amount of density evaluations: In Westermann and Zech 2023
and Cui et al. 2023b sampling is clear (least squares problem).
Combination of SoS with α-divergences less clear → cross-validation.

Curse of dimensionality: Scaling to high dimension requires
adaptivity.
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Summary & future work

Link to preprint

https://arxiv.org/abs/2402.17943

Code

Generic implementation of
sequential measure transport
mechanism and SoS maps

Many thanks to my supervisors, collaborators, and for helpful discussions
with Ricardo Baptista.
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Convergence analysis - general idea

General proof idea from Cui et al. 2023a

D
(
π(L)||π̃(L)

)
≤ ωD

(
π(L)||π̃(L−1)

)
≤ ωD

(
π(L)||π(L−1)

)
+ ωD

(
π(L−1)||π̃(L−1)

)
recursion...

Problem: triangle inequality does not hold for α-divergences!
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Convergence analysis by geometric properties of
α-divergences

π(ℓ)

π(ℓ+1)

f
(ℓ)
proj

π̃(ℓ)

S

α-geodesic

α-projection
α∗-projection

Assumption

We assume that there exists an ϵ ≥ 0 so that

Dα

(
π(ℓ+1)||f (ℓ)proj

)
≤ (1 + ϵ) Dα

(
π(ℓ+1)||π(ℓ)

)
∀l ∈ [L].
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Convergence analysis by geometric properties of
α-divergences

Pythagorean theorem instead of the triangle inequality:

Dα

(
π(L)||π̃(L)

)
≤ ωDα

(
π(L)||π̃(L−1)

)
= ωDα

(
π(L)||f (L−1)

proj

)
+ ωDα

(
f
(L−1)
proj ||π̃(L−1)

)
≤ ω(1 + ϵ) Dα

(
π(L)||π(L−1)

)
+ ωDα

(
f
(L−1)
proj ||π̃(L−1)

)
≤ ω(1 + ϵ) Dα

(
π(L)||π(L−1)

)
+ ωDα

(
π(L−1)||π̃(L−1)

)
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Convergence analysis by geometric properties of
α-divergences

Proposition

Furthermore, let Dα(π
(0)||π̃(0)) = 0, for example by π(0) = ρref. If ω < 1,

than the estimation of π(L) is bounded with

Dα

(
π(L)||π̃(L)

)
≤ ω(1 + ϵ)

1− ω
η(L).
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Entropic regularized optimal transport

The entropic regularized optimal transport problem between distributions
p and q with cost c can be written as

π̃ = argmin
π̃

DKL (π||ξϵ) s.t.

∫
X
π(x , y)dx = q(y)∫

Y
π(x , y)dy = p(x)

ϵ = 10 ϵ = 0.5 ϵ = 0.03 ϵ = 0.001
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Entropic regularized optimal transport

The entropic regularized optimal transport problem between distributions
p and q with cost c can be written as

π̃(2) = argmin
π

DKL

(
π||T ♯

1 ξϵ

)
s.t.

∫
X
(T1)♯π(x , y)dx = q(y)∫

Y
(T1)♯π(x , y)dy = p(x)

ϵ = 10 ϵ = 0.5 ϵ = 0.03 ϵ = 0.001
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Entropic regularized optimal transport

The entropic regularized optimal transport problem between distributions
p and q with cost c can be written as

π̃(2) = argmin
π

DKL

(
π||T ♯

1 ξϵ

)
s.t.

∫
X
(T1)♯π(x , y)dx = q(y)∫

Y
(T1)♯π(x , y)dy = p(x)

π̃(1) T ♯
1 π

(2)

T ♯
1←

π(2)
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