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Problem statement

Model approximation

Notations
Let u be a computational model defined on an open set X ⊆ Rd :

u : X −→ R
x 7−→ u(x)

where d ≫ 1.

In many real case scenarios (scientific and engineering problems) u is:

computationally expensive and slow to evaluate,

∇u can be evaluated for the same computational cost as an evaluation of u using
the adjoint method (Plessix, 2006).
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Problem statement

Model approximation

Goal
Given a set S = {(xk , u(xk ),∇u(xk ))}1≤k≤ntrain and a tolerance ϵ, build an accurate
and fast to evaluate approximation ũ such that:

E[(u(X )− ũ(X ))2] ≤ ϵ

with X a random vector.

Due to the curse of dimensionality, classical approximation methods requires ntrain to
grow exponentially with d .
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Problem statement

Need for dimension reduction

Work around: Exploit low dimensional structures, if exists.

Problem formulation
Find a feature map g : X ⊆ Rd → Rm and a profile function f : Rm → R with m ≪ d
such that

E[(u(X)− f ◦ g(X))2] ≤ ϵ,

for some prescribed tolerance ϵ > 0.

Approximation class for f and g ?

How to use ∇u to build g ?
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Gradient based dimension reduction

How to use ∇u to learn g ?

u = f ◦ g
⇓

∇u(x) = ∇g(x)⊤∇f (g(x))
⇓

∇u(x) ∈ range(∇g(x)⊤)
⇓

Jm(g) := E[∥∇u(x)− Πrange(∇g(x)⊤)∇u(x)∥2] = 0

Is the reciprocal ⇑ true ?

Does Jm(g) ≈ 0 =⇒ u ≈ f ◦ g ?
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Gradient based dimension reduction

Poincaré inequality

Is the reciprocal ⇑ true ? Yes, if:
either g(x) = U⊤

m x with Um ∈ Rd×m a matrix with orthogonal columns (Zahm et al.,
2019; Bigoni et al., 2022),
or, more generally, g(x) = (φ1(x), . . . , φm(x)) where φ(x) := (φ1(x), . . . , φd (x)) is a
C1 diffeomorphism in Rd . (Verdière, Prieur, and Zahm, 2023)

Does Jm(g) ≈ 0 =⇒ u ≈ f ◦ g ?

Poincaré inequality (Bakry et al., 2008)

For X a continuous random variable in Rd , the Poincaré constant C(X ) is defined as
the smallest constant such that:

E[(h(X )− E(h(X)))2] ≤ C(X)E[∥∇h(X )∥2
2],

holds for any continuously differentiable function h : supp(X ) → R. We say that X
satisfies Poincaré inequality (6) if C(X) < +∞.

In particular, if X ∼ N (0, Id ) then C(X ) = 1.
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Gradient based dimension reduction

Gradient based dimension reduction

For Gm a given class of functions for g we have:

Proposition

If C(X |Gm) := supg∈Gm supzm∈Rm C(X |g(X) = zm) < +∞, the reconstruction error
satisfies

min
f :Rm→R

E[(u(X)− f ◦ g(X))2] ≤ C(X |Gm)E[∥∇u(x)− Πrange(∇g(x)⊤)∇u(x)∥2]︸ ︷︷ ︸
:=Jm(g)

.
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Gradient based dimension reduction

Linear case: Active subspace

Linear case (Active Subspace) (Constantine, Dow, and Wang, 2014; Zahm et al.,
2019)

Gm =
{

g(x) = U⊤
m x
∣∣∣Um ∈ Rd×m with orthogonal columns

}
,

Jm(g) = E[∥(Id − UmU⊤
m )∇u(X)∥2

2],

moreover X ∼ N (0, Id ) ⇒ C(X |Gm) = 1.

Linear case (Active Subspace) (Constantine, Dow, and Wang, 2014; Zahm et al., 2019)

For X ∼ N (0, Id ) and for λ1 ≥ . . . ≥ λd ≥ 0 the eigenvalues of the active subspace
matrix:

H(u) := E[∇u(X)∇u(X )⊤] ∈ Rd×d ,

we have:

min
g∈Gm

Jm(g) = min
Um

E[∥(Id − UmU⊤
m )∇u(X)∥2

2] =
d∑

i=m

λi .

Dimension reduction strategy: For a given tolerance ϵ > 0, choose m such that∑d
i=m λi ≤ ϵ. The feature map Um is given by the m first eigenvectors of H(u).
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Active Subspace limitations

Active Subspace limitations

When does Active Subspace fails?

Models with nonlinear low dimensional structures, for instance:

u(x) = sin(∥x∥2).

Isotropic function ⇒ flat H(u) spectrum.

Models with masked linear low dimensional structures due to high-frequency,
low-amplitude components, for instance:

u(x1, x2) = sin(x1) +
1
6
sin(10x2).

⇒ Selection errors.
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Nonlinear dimension reduction
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Diffeomorphism based feature learning

Non linear dimension reduction

Linear dimension reduction Non linear dimension reduction

In (Verdière, Prieur, and Zahm, 2023), we propose to build g as the solution to:

min
g∈Gm(Rd )

Jm(g) := E[∥∇u(x)− Πrange(∇g(x)⊤)∇u(x)∥2]

where

Gm(Rd ) =

{
g : Rd → Rm

x 7→ (φ1(x), . . . , φm(x))

∣∣∣∣φ ∈ D
}
,

for D a set of C1-diffeomorphisms parametrized with an invertible neural network.

Jm(g) is minimized with a gradient descent type algorithm (ADAM),

∇g(x) is computed with automatic differentiation (Griewank et al., 1989; Baydin
et al., 2018).
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Numerical examples

Non linear dimension reduction examples

u1(x) = sin(∥x∥2), u2(x) = exp

(
1
d

d∑
i=1

sin(xi )ecos(xi )

)

(a) u1 on Ω = [0, 1]20 with ntrain = 100 (b) u2 on Ω = [−1, 1]8 with ntrain = 100

Figure: Scatter plot {(g(x i ), u(x i ))}i≥1 for a random testing set of 10000 points and for m = 1
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Numerical examples

Non linear dimension reduction summary

Advantages:

A nonlinear extension to Active Subspace
Outperforms Active Subspace
Allows to discover non linear low dimensional active manifolds

Drawbacks:

No control on C(X |Gm) yet
No closed-form minimizer of Jm(g)
More complex to use (need to train an invertible neural network)

More details in the following papers:

Romain Verdière, Clémentine Prieur, and Olivier Zahm (Dec. 2023).
“Diffeomorphism-based feature learning using Poincaré inequalities on augmented
input space”. working paper or preprint. URL: https://hal.science/hal-04364208

Daniele Bigoni et al. (2022). “Nonlinear dimension reduction for surrogate modeling
using gradient information”. In: Information and Inference: A Journal of the IMA
11.4, pp. 1597–1639
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Mollified Active Subspace
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Selection errors

Linear dimension reduction: selection error on an example

Consider the high frequency, low amplitude component model:

u : R2 → R
(x1, x2) 7→ sin(x1) +

1
6 sin(10x2).

where X ∼ N (0, I2).

If we only consider coordinate selection:

Coordinate selected Approximation error AS upper-bound
g(x) = x1 ≈ 0.14 ≈ 1.39
g(x) = x2 ≈ 0.43 ≈ 0.57

=⇒ Selection error.
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Mollified Active Subspace Method

Mollification to avoid selection error

Idea : Replace u with Pt,M(u)

Definition (Mollifying operator)

For t ∈ R+∗ and M ∈ Rd×d a positive semi-definite matrix we define:

Pt,M(u)(x) = E[u(e−tM x +

√
Id − e−2tM Z )]

where Z ∼ µ is independent of X . Pt,M is a generalization of the semigroup associated
with the Ornstein–Uhlenbeck process.

Pt,M(u) kills high-frequency, low-amplitude components of the model.

(a) t = 0.02, M = I2 (b) t = 0.05, M = I2 (c) t = 0.2, M = I2

Figure: Plots of u and Pt,M (u) for x1 = x2 and for different values of t .
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Mollified Active Subspace Method

Mollifying operator property

M = Id : isotropic mollification

M semi-definite positive: anisotropic mollification. Each direction of the
eigenvector basis of M is mollified according t times the corresponding eigenvalue.

How to use Pt,M(u) instead of u to perform linear dimension reduction
?

Romain Verdière gradient-based dimension reduction 22/04/2025 17 / 24



Introduction to gradient based dimension reduction Non linear dimension reduction Mollified Active Subspace Conclusion References

Mollified Active Subspace Method

Deriving the upper bound

Proposition

For Um ∈ Rd×m a matrix with orthogonal columns and M ∈ Rd×d a semi definite
positive matrix such that (UmU⊤

m )M = M(UmU⊤
m ), we have for all t > 0:

min
f : measurable

E[(u(X)− f (U⊤
m X))2] ≤ min

f : measurable
E[(Pt,M(u)(X)− f (U⊤

m X ))2]

+
1 − e−2λmint

λmin
E[∥∇u(X)∥2

M ]

where X ∼ N (0, Id ) and where ∥∇u(X )∥2
M = ∇u(X)⊤M∇u(X). Here λmin is the

smallest non zero eigenvalue of M.
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Mollified Active Subspace Method

Mollified Active Subspace

Choice of M:

M = Id : isotropic mollification.
M = H(u): anisotropic mollification, each direction of the AS basis is mollified according
to the corresponding eigenvalue.

M = Um0 U⊤
m0

where Um0 ∈ Rd×m0 contains the m0 first eigenvectors of H(u).
Truncated isotropic mollification: mollify the m0 first directions of the AS basis.

Choice of t :

For a given tolerance ϵ > 0 set the residual error to ϵ
2 , i.e set t such that :

1−e−2λmin t

λmin
E[∥∇u(X)∥2

M ] = ϵ
2

Mollified Active Subspace (MAS) algorithm:

1 Compute the AS matrix H(u)
2 Set parameter M and t and compute the MAS matrix H(Pt,M (u))
3 Minimize the AS bound and the MAS bound over the feature map g(x) = U⊤

m x and
choose the one that gives the lowest bound.
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Mollified Active Subspace Method

How to estimate H(Pt ,M(u)) ?

For (x1, . . . , xntrain ) samples of X ∼ N (0, Id ). We estimate for H(u) with:

Ĥ(u) =
1

ntrain

ntrain∑
i=1

∇u(xi )∇u(xi )
⊤

Proposition

For u ∈ L2(Rd ), t > 0 and M ∈ Rd×d a semi definite positive matrix we have :

H(Pt,M(u)) = E[∇Pt,M(u)(X)∇Pt,M(u)(X)⊤] = e−tMEY ,Y ′

[
∇u(Y )∇u(Y ′)⊤

]
e−tM

for (Y ,Y ′)⊤ ∼ N (0, Γ), where Γ =

(
Id e−2tM

e−2tM Id

)
.

For (y1, . . . , ynadd ) samples of Y ∼ N (0, Id ) independent of X . We have:

Ĥ(Pt,M(u)) =
e−tM

ntrainnadd

 nx∑
i=1

ny∑
j=1

∇u(xi )∇u(e−2tM xi +
√

1 − e−4tM yj )
⊤


Sym

e−tM .

=⇒ Requires nadd times more samples than AS.
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Numerical example

Numerical example

Given vectors a = (a1, . . . , ad ) ∈ Rd and ω = (ω1, . . . , ωd ) ∈ Rd , we define:

u : (x1, . . . , xd ) 7−→
d∑

i=1

ai sin(ωi xi ).

Here we set d = 8, a =
(

2, 1, 1
2 ,

1
4 ,

1
6 ,

1
10 ,

1
10 ,

1
10

)
and ω = (1, 1, 4, 7, 9, 2, 7, 9).

(a) M = I2 (b) M = H(u) (c) M = U4U⊤
4

Figure: Error bound according to m for different choices of M and t . Here nx = 500 and ny = 10. The solid line
represents the mean value over 10 runs, while the shaded area denotes the region of mean ± standard
deviation. Here U4U⊤

4 is the projection onto the 4th leading eigenvectors of H(u).
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Numerical example

Numerical example - Approximation error

f is a FCNN with 3 hidden layers of 20 neurons each and a ReLU activation function. f

is trained by minimizing
1
nx

nx∑
i=1

(u(xi )− f ◦ g(xi ))
2 using ADAM optimizer.

(a) M = I2 (b) M = H(u) (c) M = U4U⊤
4

Figure: Approximation error according to m for t = 0.01 and different choices of M. Here nx = 500 and ny = 10.
The approximation error is estimated on a testing set of 10000 samples. The solid line represents the mean
value over 10 runs, while the shaded area denotes the region of mean ± standard deviation.
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Conclusion

Active subspace:

To apply first, works well for many models
Limitations for functions with nonlinear low dimension structure and for functions with high
frequency low amplitude components

Diffeomorphism feature learning:

A non linear extension to Active Subspace: allows to tackle a wider range of models
No closed-form minimizer of the bound, requires stochastic optimization

Mollified active subspace:

Allows to correct selection errors for models with oscillatory behaviors
Closed-form minimizer of the bound
Requires more samples compared to Active Subspace

Perspectives:

Importance sampling to explore different values of t
Randomized linear algebra to tackle very high dimension (d ≥ 1000) in the nonlinear setting
Application to neural networks compression
Application to a complex biogeochemical model
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Conclusion

Thank you for your attention !

Romain Verdière, Clémentine Prieur, and Olivier Zahm (Dec. 2023).
“Diffeomorphism-based feature learning using Poincaré inequalities on augmented
input space”. working paper or preprint. URL: https://hal.science/hal-04364208

Romain Verdière, Clémentine Prieur, and Olivier Zahm (May 2025). “Mollifiers to
enhance gradient based dimension reduction”. working paper or preprint (coming
soon)
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