Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces

Alexandre PASCO

Centrale Nantes, Nantes Université, France In collaboration with Anthony NOUY.

1 Introduction

- $\ensuremath{\textcircled{\textbf{0}}}$ Measuring the quality of g
- **B** Surrogate one feature
- Ourrogates multiple features
- **5** Numerical experiments
- 6 Conclusion and Perspectives

$$u(x) = \sin(x_1 + 3x_2)$$
 $v(x) = \sin(x_1 + 3x_2 + 0.05x_1x_2)$

$$\mathbf{u}(x) = \sin(x_1 + 3x_2)$$

$$v(x) = \sin(x_1 + 3x_2 + 0.05x_1x_2)$$

• Goal : Approximate $u: \mathbb{R}^d \to \mathbb{R} \in \mathcal{C}^1$ with $d \gg 1$, i.e. minimize

$$\mathcal{E}(\tilde{u}) := \mathbb{E}\left[(u(\mathbf{X}) - \tilde{u}(\mathbf{X}))^2 \right]$$

where ${\bf X}$ has probability density $\mu_{{\bf X}}.$

• Given : Few costly point evaluations

$$\left(\mathbf{x}^{(i)}, u(\mathbf{x}^{(i)}), \nabla u(\mathbf{x}^{(i)})\right)_{1 \le i \le n_s}$$

• Goal : Approximate $u: \mathbb{R}^d \to \mathbb{R} \in \mathcal{C}^1$ with $d \gg 1$, i.e. minimize

$$\mathcal{E}(\tilde{u}) := \mathbb{E}\left[(u(\mathbf{X}) - \tilde{u}(\mathbf{X}))^2 \right]$$

where ${\bf X}$ has probability density $\mu_{{\bf X}}.$

• Given : Few costly point evaluations

$$\left(\mathbf{x}^{(i)}, u(\mathbf{x}^{(i)}), \nabla u(\mathbf{x}^{(i)})\right)_{1 \le i \le n_s}.$$

- Approximation of the form $\tilde{u} = f \circ g$.
- Step 1 : Learn a **feature map** $g \in \mathcal{G}_m \subseteq \mathcal{C}^1(\mathbb{R}^d, \mathbb{R}^m)$ with $m \leq d$, for some chosen **tractable** function class \mathcal{G}_m .
- Step 2 : Learn a profile map $f : \mathbb{R}^m \to \mathbb{R}$.

- Approximation of the form $\tilde{u} = f \circ g$.
- Step 1 : Learn a feature map g ∈ G_m ⊆ C¹(ℝ^d, ℝ^m) with m ≤ d, for some chosen tractable function class G_m.
- Step 2 : Learn a profile map $f : \mathbb{R}^m \to \mathbb{R}$.

- Approximation of the form $\tilde{u} = f \circ g$.
- Step 1 : Learn a feature map g ∈ G_m ⊆ C¹(ℝ^d, ℝ^m) with m ≤ d, for some chosen tractable function class G_m.
- Step 2 : Learn a profile map $f : \mathbb{R}^m \to \mathbb{R}$.

• For a given g, the best profile map is

$$f_g(\mathbf{z}) := \mathbb{E}\left[u(\mathbf{X})|\mathbf{Z}=\mathbf{z}\right],$$

where $\mathbf{Z} := g(\mathbf{X}) \in \mathbb{R}^m$. Problem : **not computable**.

• In practice : learn f^* via regression,

$$\inf_{f \in \mathcal{F}} \mathbb{E}\left[(u(\mathbf{X}) - f(\mathbf{Z}))^2 \right]$$

• One can also consider gradient enhanced regression.

• For a given g, the best profile map is

$$f_g(\mathbf{z}) := \mathbb{E}\left[u(\mathbf{X})|\mathbf{Z}=\mathbf{z}\right],$$

where $\mathbf{Z} := g(\mathbf{X}) \in \mathbb{R}^m$. Problem : **not computable**.

• In practice : learn f^* via regression,

$$\inf_{f \in \mathcal{F}} \mathbb{E}\left[(u(\mathbf{X}) - f(\mathbf{Z}))^2 \right]$$

• One can also consider gradient enhanced regression.

• For a given g, the best profile map is

$$f_g(\mathbf{z}) := \mathbb{E}\left[u(\mathbf{X})|\mathbf{Z}=\mathbf{z}\right],$$

where $\mathbf{Z} := g(\mathbf{X}) \in \mathbb{R}^m$. Problem : **not computable**.

• In practice : learn f^* via regression,

$$\inf_{f \in \mathcal{F}} \mathbb{E}\left[(u(\mathbf{X}) - f(\mathbf{Z}))^2 \right]$$

• One can also consider gradient enhanced regression.

Introduction

$\ensuremath{\mathbf{2}}$ Measuring the quality of g

- Surrogate one feature
- Ourrogates multiple features
- **5** Numerical experiments
- **6** Conclusion and Perspectives

- [Constantine et al., 2014] Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.
- [Bigoni et al., 2022, Romor et al., 2022] Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
- [Verdière et al., 2023, Zhang et al., 2019] Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism.

- [Constantine et al., 2014] Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.
- [Bigoni et al., 2022, Romor et al., 2022] Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
- [Verdière et al., 2023, Zhang et al., 2019] Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism.

- [Constantine et al., 2014] Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.
- [Bigoni et al., 2022, Romor et al., 2022] Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
- [Verdière et al., 2023, Zhang et al., 2019] Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism.

Poincaré Inequality

- Assuming $\nabla g(\mathbf{X})$ has rank m a.s., then $\mathcal{M}_{\mathbf{Z}} := g^{-1}(\mathbf{Z})$ is a smooth submanifold of \mathbb{R}^d .
- Let $C_{\mathbf{Z}}$ the smallest constant such that for any $h \in \mathcal{C}^1(\mathcal{M}_{\mathbf{Z}}, \mathbb{R})$ with mean 0,

$$\mathbb{E}\left[h(\mathbf{X})^2 | \mathbf{Z} = \mathbf{z}\right] \le C_{\mathbf{Z}} \mathbb{E}\left[\|\nabla h(\mathbf{X})\|_2^2 | \mathbf{Z} = \mathbf{z}\right].$$

If $C_{\mathbf{Z}} < \infty$ we say that $\mu_{\mathbf{X}|\mathbf{Z}=\mathbf{z}}$ satisfies a **Poincaré Inequality**.

• Apply to $h = (u - f_g \circ g)_{|\mathcal{M}_z}$ for $\mathbf{x} \in \mathcal{M}_z$, $\|\nabla h(\mathbf{x})\|_2^2 = \|\Pi_{\nabla g(\mathbf{x})}^{\perp} \nabla u(\mathbf{x})\|_2^2 = \|\nabla u(\mathbf{x})\|_2^2 - \|\Pi_{\nabla g(\mathbf{x})} \nabla u(\mathbf{x})\|_2^2$

Poincaré Inequality

- Assuming $\nabla g(\mathbf{X})$ has rank m a.s., then $\mathcal{M}_{\mathbf{Z}} := g^{-1}(\mathbf{Z})$ is a smooth submanifold of \mathbb{R}^d .
- Let $C_{\mathbf{Z}}$ the smallest constant such that for any $h \in \mathcal{C}^1(\mathcal{M}_{\mathbf{Z}}, \mathbb{R})$ with mean 0,

$$\mathbb{E}\left[h(\mathbf{X})^2 | \mathbf{Z} = \mathbf{z}\right] \le C_{\mathbf{Z}} \mathbb{E}\left[\|\nabla h(\mathbf{X})\|_2^2 | \mathbf{Z} = \mathbf{z}\right].$$

If $C_{\mathbf{Z}} < \infty$ we say that $\mu_{\mathbf{X}|\mathbf{Z}=\mathbf{z}}$ satisfies a **Poincaré Inequality**.

• Apply to
$$h = (u - f_g \circ g)_{|\mathcal{M}_z}$$
 for $\mathbf{x} \in \mathcal{M}_z$,
 $\|\nabla h(\mathbf{x})\|_2^2 = \|\Pi_{\nabla g(\mathbf{x})}^{\perp} \nabla u(\mathbf{x})\|_2^2 = \|\nabla u(\mathbf{x})\|_2^2 - \|\Pi_{\nabla g(\mathbf{x})} \nabla u(\mathbf{x})\|_2^2$

Poincaré Inequality

- Assuming $\nabla g(\mathbf{X})$ has rank m a.s., then $\mathcal{M}_{\mathbf{Z}} := g^{-1}(\mathbf{Z})$ is a smooth submanifold of \mathbb{R}^d .
- Let $C_{\mathbf{Z}}$ the smallest constant such that for any $h \in \mathcal{C}^1(\mathcal{M}_{\mathbf{Z}}, \mathbb{R})$ with mean 0,

$$\mathbb{E}\left[h(\mathbf{X})^2 | \mathbf{Z} = \mathbf{z}\right] \le C_{\mathbf{Z}} \mathbb{E}\left[\|\nabla h(\mathbf{X})\|_2^2 | \mathbf{Z} = \mathbf{z}\right].$$

If $C_{\mathbf{Z}} < \infty$ we say that $\mu_{\mathbf{X}|\mathbf{Z}=\mathbf{z}}$ satisfies a **Poincaré Inequality**.

• Apply to $h = (u - f_g \circ g)_{|\mathcal{M}_z}$ for $\mathbf{x} \in \mathcal{M}_z$, $\|\nabla h(\mathbf{x})\|_2^2 = \|\Pi_{\nabla g(\mathbf{x})}^{\perp} \nabla u(\mathbf{x})\|_2^2 = \|\nabla u(\mathbf{x})\|_2^2 - \|\Pi_{\nabla g(\mathbf{x})} \nabla u(\mathbf{x})\|_2^2$

For $g \in \mathcal{G}_m$ define

$$\mathcal{J}(g) := \mathbb{E}\left[\|\Pi_{\nabla g(\mathbf{X})}^{\perp} \nabla u(\mathbf{X})\|_{2}^{2} \right]$$

(1) Assume rank $(\nabla g(\mathbf{x})) = m$ for all $\mathbf{x} \in \mathcal{X}$ and all $g \in \mathcal{G}_m$. (2) Assume $C(\mathbf{X}|\mathcal{G}_m) < \infty$ where

$$C(\mathbf{X}|\mathcal{G}_m) := \sup_{g \in \mathcal{G}_m} \sup_{\mathbf{z} \in g(\mathcal{X})} C_{\mathbf{z}}.$$

Proposition ([Bigoni et al., 2022])

Under assumptions (1) and (2), it holds

$$\min_{f:\mathbb{R}^m\to\mathbb{R}}\mathbb{E}\left[(u(\mathbf{X})-f\circ g(\mathbf{X}))^2\right] \le C(\mathbf{X}|\mathcal{G}_m)\mathcal{J}(g)$$

For $g \in \mathcal{G}_m$ define

$$\mathcal{J}(g) := \mathbb{E}\left[\|\Pi_{\nabla g(\mathbf{X})}^{\perp} \nabla u(\mathbf{X})\|_{2}^{2} \right]$$

(1) Assume rank $(\nabla g(\mathbf{x})) = m$ for all $\mathbf{x} \in \mathcal{X}$ and all $g \in \mathcal{G}_m$. (2) Assume $C(\mathbf{X}|\mathcal{G}_m) < \infty$ where

$$C(\mathbf{X}|\mathcal{G}_m) := \sup_{g \in \mathcal{G}_m} \sup_{\mathbf{z} \in g(\mathcal{X})} C_{\mathbf{z}}.$$

Proposition ([Bigoni et al., 2022])

Under assumptions (1) and (2), it holds

$$\min_{f:\mathbb{R}^m\to\mathbb{R}}\mathbb{E}\left[(u(\mathbf{X})-f\circ g(\mathbf{X}))^2\right]\leq C(\mathbf{X}|\mathcal{G}_m)\mathcal{J}(g)$$

Caveats:

- For general classes \mathcal{G}_m bounding $C(\mathcal{G}_m)$ is an open problem.
- Worse : if $g^{-1}(\{z\})$ is not connected then $C_z = \infty$.

Hopes:

- Poincaré-like bounds are pessimistic.
- Numerical experiments have shown good performances.

Caveats:

- For general classes \mathcal{G}_m bounding $C(\mathcal{G}_m)$ is an open problem.
- Worse : if $g^{-1}(\{z\})$ is not connected then $C_z = \infty$.

Hopes:

- Poincaré-like bounds are pessimistic.
- Numerical experiments have shown good performances.

The function ${\mathcal J}$

Recall that

$$\mathcal{J}(g) = \mathbb{E} \left[\|\nabla u(\mathbf{X})\|_2^2 \right] - \mathbb{E} \left[\|\Pi_{\nabla g(\mathbf{X})} \nabla u(\mathbf{X})\|_2^2 \right]$$

• For $g(\mathbf{x}) = G^T \mathbf{x}$ with $G^T G = I_m$,
 $\Pi_{\nabla g(\mathbf{X})} = G G^T$,

thus $G \mapsto \mathcal{J}(G^T)$ is quadratic and can be explicitly minimized.

• For $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with fixed $\Phi : \mathbb{R}^d \to \mathbb{R}^K$,

 $\Pi_{\nabla g(\mathbf{X})} = \nabla \Phi(\mathbf{X}) G(G^T \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) G)^{-1} G^T \nabla \Phi(\mathbf{X})^T,$

thus ${\mathcal J}$ is not convex anymore and no explicit minimizer is known.

The function ${\mathcal J}$

Recall that

$$\begin{aligned} \mathcal{J}(g) &= \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 \right] - \mathbb{E}\left[\|\Pi_{\nabla g(\mathbf{X})} \nabla u(\mathbf{X})\|_2^2 \right] \end{aligned}$$

For $g(\mathbf{x}) = G^T \mathbf{x}$ with $G^T G = I_m$,
 $\Pi_{\nabla g(\mathbf{X})} = G G^T$,

thus $G \mapsto \mathcal{J}(G^T)$ is quadratic and can be explicitly minimized.

• For $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with fixed $\Phi : \mathbb{R}^d \to \mathbb{R}^K$,

 $\Pi_{\nabla g(\mathbf{X})} = \nabla \Phi(\mathbf{X}) G(G^T \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) G)^{-1} G^T \nabla \Phi(\mathbf{X})^T,$

thus $\mathcal J$ is **not convex** anymore and **no explicit minimizer** is known.

The function ${\cal J}$

Recall that

$$\mathcal{J}(g) = \mathbb{E} \left[\|\nabla u(\mathbf{X})\|_2^2 \right] - \mathbb{E} \left[\|\Pi_{\nabla g(\mathbf{X})} \nabla u(\mathbf{X})\|_2^2 \right]$$

• For $g(\mathbf{x}) = G^T \mathbf{x}$ with $G^T G = I_m$,
 $\Pi_{\nabla g(\mathbf{X})} = G G^T$,

thus $G \mapsto \mathcal{J}(G^T)$ is quadratic and can be explicitly minimized.

• For $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with fixed $\Phi : \mathbb{R}^d \to \mathbb{R}^K$,

$$\Pi_{\nabla g(\mathbf{X})} = \nabla \Phi(\mathbf{X}) G(G^T \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) G)^{-1} G^T \nabla \Phi(\mathbf{X})^T,$$

thus ${\mathcal J}$ is not convex anymore and no explicit minimizer is known.

The set \mathcal{G}_m

• Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.

- + Known bounds on $C(\mathbf{X}|\mathcal{G}_m)$ for some classical $\mu_{\mathbf{X}}$.
- + Easy to minimize \mathcal{J} , i.e. to find the best A.
- Restricted class.
- Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
 - + Learning G is more reasonable (\mathcal{J} non-convex but \mathcal{G}_m convex).
 - Cannot say much on $C_{\mathbf{z}}$.
- Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism .
 - $+\,$ Allow penalization for better control on $\mathit{C}_{\mathbf{z}}.$
 - Learning ψ can be difficult (\mathcal{J} non-convex and \mathcal{G}_m non-convex).

The set \mathcal{G}_m

• Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.

- + Known bounds on $C(\mathbf{X}|\mathcal{G}_m)$ for some classical $\mu_{\mathbf{X}}$.
- + Easy to minimize \mathcal{J} , i.e. to find the best A.
- Restricted class.
- Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
 - + Learning G is more reasonable (\mathcal{J} non-convex but \mathcal{G}_m convex).
 - Cannot say much on $C_{\mathbf{z}}$.
- Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism .
 - $+\,$ Allow penalization for better control on $\mathit{C}_{\mathbf{z}}.$
 - Learning ψ can be difficult (\mathcal{J} non-convex and \mathcal{G}_m non-convex).

The set \mathcal{G}_m

• Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.

- + Known bounds on $C(\mathbf{X}|\mathcal{G}_m)$ for some classical $\mu_{\mathbf{X}}$.
- + Easy to minimize \mathcal{J} , i.e. to find the best A.
- Restricted class.
- Vector space $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with $\Phi : \mathbb{R}^d \to \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \ge d$.
 - + Learning G is more reasonable (\mathcal{J} non-convex but \mathcal{G}_m convex).
 - Cannot say much on $C_{\mathbf{z}}$.
- Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \cdots, \psi_m(\mathbf{x}))^T$ where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism .
 - $+\,$ Allow penalization for better control on $C_{\mathbf{z}}.$
 - Learning ψ can be difficult (\mathcal{J} non-convex and \mathcal{G}_m non-convex).

Introduction

- $\ensuremath{\textcircled{\textbf{0}}}\xspace{1.5mm} \ensuremath{\textcircled{\textbf{0}}}\xspace{1.5mm} \ensuremath{\textbf{0}}\xspace{1.5mm} \ensuremath{\textbf{0}}$
- **3** Surrogate one feature
- O Surrogates multiple features
- **5** Numerical experiments
- 6 Conclusion and Perspectives

Surrogate one feature: definition

• The loss function ${\mathcal J}$ now writes

$$\begin{split} \mathcal{J}(g) &= \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 - \frac{(\nabla g(\mathbf{X})^T \nabla u(\mathbf{X}))^2}{\|\nabla g(\mathbf{X})\|_2^2} \right] \\ &= \mathbb{E}\left[\frac{1}{\|\nabla g(\mathbf{X})\|_2^2} \underbrace{\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2}_{\text{Quadratic wrt } g} \right] \end{split}$$

• Controlling $\|\nabla g(\mathbf{X})\|_2^2$ allows to control $\mathcal{J}(g)$ by a **quadratic** surrogate,

$$\mathcal{L}_1(g) := \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2 \right].$$

• Problem : control should be **uniform** on \mathcal{G}_1 .

Surrogate one feature: definition

• The loss function ${\mathcal J}$ now writes

$$\begin{split} \mathcal{J}(g) &= \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 - \frac{(\nabla g(\mathbf{X})^T \nabla u(\mathbf{X}))^2}{\|\nabla g(\mathbf{X})\|_2^2} \right] \\ &= \mathbb{E}\left[\frac{1}{\|\nabla g(\mathbf{X})\|_2^2} \underbrace{\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2}_{\text{Quadratic wrt } g} \right] \end{split}$$

• Controlling $\|\nabla g(\mathbf{X})\|_2^2$ allows to control $\mathcal{J}(g)$ by a **quadratic** surrogate,

$$\mathcal{L}_1(g) := \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2 \right].$$

• Problem : control should be **uniform** on \mathcal{G}_1 .

Surrogate one feature: definition

• The loss function ${\mathcal J}$ now writes

$$\begin{split} \mathcal{J}(g) &= \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 - \frac{(\nabla g(\mathbf{X})^T \nabla u(\mathbf{X}))^2}{\|\nabla g(\mathbf{X})\|_2^2} \right] \\ &= \mathbb{E}\left[\frac{1}{\|\nabla g(\mathbf{X})\|_2^2} \underbrace{\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2}_{\text{Quadratic wrt } g} \right] \end{split}$$

• Controlling $\|\nabla g(\mathbf{X})\|_2^2$ allows to control $\mathcal{J}(g)$ by a **quadratic** surrogate,

$$\mathcal{L}_1(g) := \mathbb{E}\left[\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^{\perp} \nabla g(\mathbf{X})\|_2^2 \right].$$

• Problem : control should be **uniform** on \mathcal{G}_1 .

Surrogate one feature: Uniform control

• Uniformly bi-Lipschitz (ideal setting), i.e

$$\forall g \in \mathcal{G}_1, \quad 0 < c \le \|\nabla g(\mathbf{X})\|_2^2 \le C < +\infty$$

- + Possible when : linear or diffeomorphism-based.
- Not possible when : vector space of dimension K > d.
- Deviation inequalities, i.e rate of convergence of

$$\forall g \in \mathcal{G}_1, \quad \underbrace{\mathbb{P}\left[\|\nabla g(\mathbf{X})\|_2^2 \leq \beta^{-1}\right]}_{\text{Small deviations}}, \underbrace{\mathbb{P}\left[\|\nabla g(\mathbf{X})\|_2^2 \geq \beta\right]}_{\text{Large deviations}} \xrightarrow[\beta \to +\infty]{} 0$$

+ Possible when : $\mathbf{x}\mapsto \|\nabla g(\mathbf{x})\|_2^2$ satisfies a type of Remez inequality.

Surrogate one feature: Uniform control

• Uniformly bi-Lipschitz (ideal setting), i.e

$$\forall g \in \mathcal{G}_1, \quad 0 < c \le \|\nabla g(\mathbf{X})\|_2^2 \le C < +\infty$$

- + Possible when : linear or diffeomorphism-based.
- Not possible when : vector space of dimension K > d.
- Deviation inequalities, i.e rate of convergence of

$$\forall g \in \mathcal{G}_1, \quad \underbrace{\mathbb{P}\left[\|\nabla g(\mathbf{X})\|_2^2 \leq \beta^{-1} \right]}_{\text{Small deviations}}, \underbrace{\mathbb{P}\left[\|\nabla g(\mathbf{X})\|_2^2 \geq \beta \right]}_{\text{Large deviations}} \xrightarrow[\beta \to +\infty]{} 0$$

+ Possible when : $\mathbf{x}\mapsto \|\nabla g(\mathbf{x})\|_2^2$ satisfies a type of Remez inequality.

Consider $h : \mathbb{R}^d \to \mathbb{R}$. Assume that

(1) X has s-concave, $s \in (0, 1/d]$, proba law (implies compactly supported on a convex set).

(2)~ For any bounded line $J\subset \mathbb{R}^d$ and any measurable $I\subset J,$

$$\sup_{\mathbf{x}\in J} |h(\mathbf{x})| \le \left(\frac{A_h|J|}{|I|}\right)^{k_h} \sup_{\mathbf{x}\in I} |h(\mathbf{x})|,$$

e.g. $A_h = 4$ and $k_h = k$ for polynomial with total degree $\leq k$.

Proposition (Direct consequence of [Fradelizi, 2009])

Under (1) and (2) and for some η_h , it holds for all $\beta > 0$,

 $\mathbb{P}\left[|h(\mathbf{X})| \le \beta^{-1}\right] \lesssim \beta^{-1/k_h}, \quad \mathbb{P}\left[|h(\mathbf{X})| \ge \beta^{-1}\right] \lesssim 1_{\beta \le \eta_h}.$

For $s\in [-\infty,0],$ still holds but slower decay for large deviations.

Consider $h : \mathbb{R}^d \to \mathbb{R}$. Assume that

(1) X has s-concave, $s \in (0, 1/d]$, proba law (implies compactly supported on a convex set).

(2) For any bounded line $J \subset \mathbb{R}^d$ and any measurable $I \subset J$,

$$\sup_{\mathbf{x}\in J} |h(\mathbf{x})| \le \left(\frac{A_h|J|}{|I|}\right)^{k_h} \sup_{\mathbf{x}\in I} |h(\mathbf{x})|,$$

e.g. $A_h = 4$ and $k_h = k$ for polynomial with total degree $\leq k$.

Proposition (Direct consequence of [Fradelizi, 2009])

Under (1) and (2) and for some η_h , it holds for all $\beta > 0$,

 $\mathbb{P}\left[|h(\mathbf{X})| \le \beta^{-1}\right] \lesssim \beta^{-1/k_h}, \quad \mathbb{P}\left[|h(\mathbf{X})| \ge \beta^{-1}\right] \lesssim 1_{\beta \le \eta_h}.$

For $s\in [-\infty,0],$ still holds but slower decay for large deviations.

Consider $h : \mathbb{R}^d \to \mathbb{R}$. Assume that

(1) X has s-concave, $s \in (0, 1/d]$, proba law (implies compactly supported on a convex set).

 $(2)\;\; {\rm For\; any\; bounded\; line\;} J\subset \mathbb{R}^d\; {\rm and\; any\; measurable\;} I\subset J,$

$$\sup_{\mathbf{x}\in J} |h(\mathbf{x})| \le \left(\frac{A_h|J|}{|I|}\right)^{k_h} \sup_{\mathbf{x}\in I} |h(\mathbf{x})|,$$

e.g. $A_h = 4$ and $k_h = k$ for polynomial with total degree $\leq k$.

Proposition (Direct consequence of [Fradelizi, 2009])

Under (1) and (2) and for some η_h , it holds for all $\beta > 0$,

 $\mathbb{P}\left[|h(\mathbf{X})| \le \beta^{-1}\right] \lesssim \beta^{-1/k_h}, \quad \mathbb{P}\left[|h(\mathbf{X})| \ge \beta^{-1}\right] \lesssim 1_{\beta \le \eta_h}.$

For $s \in [-\infty, 0]$, still holds but slower decay for large deviations.

Consider $h : \mathbb{R}^d \to \mathbb{R}$. Assume that

(1) X has s-concave, $s \in (0,1/d],$ proba law (implies compactly supported on a convex set).

 $(2)\;\; {\rm For\; any\; bounded\; line\;} J\subset \mathbb{R}^d\; {\rm and\; any\; measurable\;} I\subset J,$

$$\sup_{\mathbf{x}\in J} |h(\mathbf{x})| \le \left(\frac{A_h|J|}{|I|}\right)^{k_h} \sup_{\mathbf{x}\in I} |h(\mathbf{x})|,$$

e.g. $A_h = 4$ and $k_h = k$ for polynomial with total degree $\leq k$.

Proposition (Direct consequence of [Fradelizi, 2009])

Under (1) and (2) and for some η_h , it holds for all $\beta > 0$,

$$\mathbb{P}\left[|h(\mathbf{X})| \leq \beta^{-1}\right] \lesssim \beta^{-1/k_h}, \quad \mathbb{P}\left[|h(\mathbf{X})| \geq \beta^{-1}\right] \lesssim \mathbf{1}_{\beta \leq \eta_h}$$

For $s \in [-\infty, 0]$, still holds but slower decay for large deviations.

Surrogate one feature: Suboptimality result

• If \mathcal{G}_1 contains only non-constant polynomials of total degree at most $\ell + 1$, then the previous deviations inequalities hold uniformly on \mathcal{G}_1 with $k = 2\ell$ and A = 4.

Proposition

Under (1), with \mathcal{G}_1 as above, it holds

$$\forall g \in \mathcal{G}_1, \quad \gamma_1 \mathcal{L}_1(g) \le \mathcal{J}(g) \le \gamma_2 \mathcal{L}_1(g)^{\frac{1}{1+2\ell}},$$

for some $0 < \gamma_1, \gamma_2 < +\infty$. In particular, for some $0 < \gamma_3 < +\infty$,

$$\mathcal{J}(g^*) \le \gamma_3 \inf_{\mathcal{G}_1} \mathcal{J}^{\frac{1}{1+2\ell}}$$

Similar results hold for $s \in [-\infty, 0]$.

Surrogate one feature: Suboptimality result

• If \mathcal{G}_1 contains only non-constant polynomials of total degree at most $\ell + 1$, then the previous deviations inequalities hold uniformly on \mathcal{G}_1 with $k = 2\ell$ and A = 4.

Proposition

Under (1), with \mathcal{G}_1 as above, it holds

$$\forall g \in \mathcal{G}_1, \quad \gamma_1 \mathcal{L}_1(g) \le \mathcal{J}(g) \le \gamma_2 \mathcal{L}_1(g)^{\frac{1}{1+2\ell}},$$

for some $0 < \gamma_1, \gamma_2 < +\infty$. In particular, for some $0 < \gamma_3 < +\infty$,

$$\mathcal{J}(g^*) \le \gamma_3 \inf_{\mathcal{G}_1} \mathcal{J}^{\frac{1}{1+2\ell}}$$

Similar results hold for $s \in [-\infty, 0]$.

Surrogate one feature: Vector space

• For assumptions to hold, we consider a sym pd $R \in \mathbb{R}^{K \times K}$, $\mathcal{G}_1 := \Big\{ g : \mathbf{x} \mapsto G^T \Phi(\mathbf{x}) : G \in \mathbb{R}^K, G^T R G = 1 \Big\},$

• [Bigoni et al., 2022] Invariance property of ${\cal J}$ implies

$$\inf_{g\in \operatorname{span}\{\Phi_1,\cdots,\Phi_K\}}\mathcal{J}(g) = \inf_{g\in\mathcal{G}_1}\mathcal{J}(g)$$

Proposition

$$\min_{g \in \mathcal{G}_1} \mathcal{L}_1(g) = \min_{\substack{G \in \mathbb{R}^K \\ G^T R G = 1}} G^T H G,$$

where $H := H^{(1)} - H^{(2)} \in \mathbb{R}^{K \times K}$ is sym psd and

 $H^{(1)} := \mathbb{E} \left[\| \nabla u(\mathbf{X}) \|_2^2 \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) \right] \in \mathbb{R}^{K \times K},$ $H^{(2)} := \mathbb{E} \left[\nabla \Phi(\mathbf{X})^T \nabla u(\mathbf{X}) \nabla u(\mathbf{X})^T \nabla \Phi(\mathbf{X}) \right] \in \mathbb{R}^{K \times K}.$

Surrogate one feature: Vector space

• For assumptions to hold, we consider a sym pd $R \in \mathbb{R}^{K \times K}$,

$$\mathcal{G}_1 := \left\{ g : \mathbf{x} \mapsto G^T \Phi(\mathbf{x}) : G \in \mathbb{R}^K, G^T R G = 1 \right\},\$$

• [Bigoni et al., 2022] Invariance property of ${\cal J}$ implies

$$\inf_{g\in \operatorname{span}\{\Phi_1,\cdots,\Phi_K\}}\mathcal{J}(g)=\inf_{g\in \mathcal{G}_1}\mathcal{J}(g)$$

Proposition

$$\min_{g \in \mathcal{G}_1} \mathcal{L}_1(g) = \min_{\substack{G \in \mathbb{R}^K \\ G^T R G = 1}} G^T H G,$$

where $H:=H^{(1)}-H^{(2)}\in \mathbb{R}^{K\times K}$ is sym psd and

 $H^{(1)} := \mathbb{E} \left[\|\nabla u(\mathbf{X})\|_2^2 \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) \right] \in \mathbb{R}^{K \times K},$ $H^{(2)} := \mathbb{E} \left[\nabla \Phi(\mathbf{X})^T \nabla u(\mathbf{X}) \nabla u(\mathbf{X})^T \nabla \Phi(\mathbf{X}) \right] \in \mathbb{R}^{K \times K}.$

Introduction

- **2** Measuring the quality of g
- Surrogate one feature
- Ourrogates multiple features
- **5** Numerical experiments
- **6** Conclusion and Perspectives

- With similar reasoning, we define for $1 \leq j \leq m$, $\mathcal{L}_{m,j}(g) := \mathbb{E}\left[\|v_{g,j}(\mathbf{X})\|_2^2 \|\Pi_{v_{g,j}(\mathbf{X})}^{\perp} \Pi_{\nabla g_{-j}(\mathbf{X})}^{\perp} \nabla g_j(\mathbf{X})\|_2^2 \right],$ with $v_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^{\perp} \nabla u(\mathbf{x}).$
- For fixed $g_{-j} : \mathbb{R}^d \to \mathbb{R}^{m-1}$, we use $h \mapsto \mathcal{L}_{m,j}((g_{-j}, h))$ as a quadratic surrogate to $h \mapsto \mathcal{J}((g_{-j}, h))$.
- Now need deviation inequalities on $\mathbf{x} \mapsto \|\Pi_{\nabla q_{-i}(\mathbf{x})}^{\perp} \nabla g_j(\mathbf{x})\|_2^2$.

Proposition

Assume the law of **X** is s-concave with $s \in (0, 1/d]$. Assume \mathcal{G}_m is a compact set of polynomial with total degree at most $\ell + 1$ with full rank gradients a.s. For a fixed g_{-j} , it holds

 $\gamma_1 \mathcal{L}_{m,j}((g_{-j},h)) \le \mathcal{J}((g_{-j},h)) \le \gamma_2 \mathcal{L}_{m,j}((g_{-j},h))^{\frac{1}{1+2\ell m}}$

- With similar reasoning, we define for $1 \leq j \leq m$, $\mathcal{L}_{m,j}(g) := \mathbb{E}\left[\|v_{g,j}(\mathbf{X})\|_2^2 \|\Pi_{v_{g,j}(\mathbf{X})}^{\perp} \Pi_{\nabla g_{-j}(\mathbf{X})}^{\perp} \nabla g_j(\mathbf{X})\|_2^2 \right],$ with $v_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^{\perp} \nabla u(\mathbf{x}).$
- For fixed $g_{-j} : \mathbb{R}^d \to \mathbb{R}^{m-1}$, we use $h \mapsto \mathcal{L}_{m,j}((g_{-j}, h))$ as a quadratic surrogate to $h \mapsto \mathcal{J}((g_{-j}, h))$.
- Now need deviation inequalities on $\mathbf{x} \mapsto \|\Pi_{\nabla q_{-i}(\mathbf{x})}^{\perp} \nabla g_j(\mathbf{x})\|_2^2$.

Proposition

Assume the law of **X** is s-concave with $s \in (0, 1/d]$. Assume \mathcal{G}_m is a compact set of polynomial with total degree at most $\ell + 1$ with full rank gradients a.s. For a fixed g_{-j} , it holds

 $\gamma_1 \mathcal{L}_{m,j}((g_{-j},h)) \leq \mathcal{J}((g_{-j},h)) \leq \gamma_2 \mathcal{L}_{m,j}((g_{-j},h))^{\frac{1}{1+2\ell m}}$

- With similar reasoning, we define for $1 \leq j \leq m$, $\mathcal{L}_{m,j}(g) := \mathbb{E}\left[\|v_{g,j}(\mathbf{X})\|_2^2 \|\Pi_{v_{g,j}(\mathbf{X})}^{\perp} \Pi_{\nabla g_{-j}(\mathbf{X})}^{\perp} \nabla g_j(\mathbf{X})\|_2^2 \right],$ with $v_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^{\perp} \nabla u(\mathbf{x}).$
- For fixed $g_{-j} : \mathbb{R}^d \to \mathbb{R}^{m-1}$, we use $h \mapsto \mathcal{L}_{m,j}((g_{-j}, h))$ as a quadratic surrogate to $h \mapsto \mathcal{J}((g_{-j}, h))$.
- Now need deviation inequalities on $\mathbf{x} \mapsto \|\Pi_{\nabla q_{-i}(\mathbf{x})}^{\perp} \nabla g_j(\mathbf{x})\|_2^2$.

Proposition

Assume the law of **X** is *s*-concave with $s \in (0, 1/d]$. Assume \mathcal{G}_m is a compact set of polynomial with total degree at most $\ell + 1$ with full rank gradients a.s. For a fixed g_{-j} , it holds

 $\gamma_1 \mathcal{L}_{m,j}((g_{-j},h)) \le \mathcal{J}((g_{-j},h)) \le \gamma_2 \mathcal{L}_{m,j}((g_{-j},h))^{\frac{1}{1+2\ell m}}$

- With similar reasoning, we define for $1 \leq j \leq m$, $\mathcal{L}_{m,j}(g) := \mathbb{E}\left[\|v_{g,j}(\mathbf{X})\|_2^2 \|\Pi_{v_{g,j}(\mathbf{X})}^{\perp} \Pi_{\nabla g_{-j}(\mathbf{X})}^{\perp} \nabla g_j(\mathbf{X})\|_2^2 \right],$ with $v_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^{\perp} \nabla u(\mathbf{x}).$
- For fixed $g_{-j} : \mathbb{R}^d \to \mathbb{R}^{m-1}$, we use $h \mapsto \mathcal{L}_{m,j}((g_{-j}, h))$ as a quadratic surrogate to $h \mapsto \mathcal{J}((g_{-j}, h))$.
- Now need deviation inequalities on $\mathbf{x} \mapsto \|\Pi_{\nabla q_{-i}(\mathbf{x})}^{\perp} \nabla g_j(\mathbf{x})\|_2^2$.

Proposition

Assume the law of **X** is s-concave with $s \in (0, 1/d]$. Assume \mathcal{G}_m is a compact set of polynomial with total degree at most $\ell + 1$ with full rank gradients a.s. For a fixed g_{-j} , it holds

 $\gamma_1 \mathcal{L}_{m,j}((g_{-j},h)) \le \mathcal{J}((g_{-j},h)) \le \gamma_2 \mathcal{L}_{m,j}((g_{-j},h))^{\frac{1}{1+2\ell m}}$

Introduction

- **2** Measuring the quality of g
- Surrogate one feature
- Ourrogates multiple features
- S Numerical experiments
- **6** Conclusion and Perspectives

Settings

• Feature: Tensorized polynomial basis $\Phi(\mathbf{x}) = (\phi_{\alpha}(\mathbf{x}))_{\alpha \in \Lambda_{p,k}}$ with

$$\phi_{\alpha}(\mathbf{x}) := \prod_{\nu=1}^{d} \phi_{\alpha_{\nu}}^{\nu}(x_{\nu}), \quad \Lambda_{p,k} := \{ \alpha \in \mathbb{N}^{d} : \|\alpha\|_{p} \le k \} \setminus \{0\},$$

where (k, p) are hyperparameters learnt by 5-fold cross-validation.

• Regression: Kernel regression with gaussian kernel and Ridge regularization, whose hyperparameters are learnt by 10-fold cross-validation.

Numerical experiments: one feature

$$u(x) = \sin(\frac{4}{\pi^2} ||x||^2), \quad d = 8, \quad m = 1$$

50%, 90% and 100% quantiles over 20 realizations. Left plots : train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$. Right plots : train and test estimations of $\|u - f \circ g\|_{L^2}/\|u\|_{L^2}$.

Numerical experiments: one feature

50%, 90% and 100% quantiles over 20 realizations. Left plots : train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$. Right plots : train and test estimations of $\|u - f \circ q\|_{L^2}/\|u\|_{L^2}$.

Numerical experiments: one feature

u(x) =borehole, d = 8, m = 1

50%, 90% and 100% quantiles over 20 realizations. Left plots : train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$. Right plots : train and test estimations of $\|u - f \circ g\|_{L^2}/\|u\|_{L^2}$.

Numerical experiments: multiple features

$$u(x) := \cos(\frac{1}{2}x^T x) + \sin(\frac{1}{2}x^T M x), \quad \mathbf{X} \sim \mathcal{U}(] - \frac{\pi}{2}, \frac{\pi}{2}[^8) \quad m = 2$$

50%, 90% and 100% quantiles over 20 realizations. Left plots : train and test estimations of $\mathcal{J}(g)/||u||_{L^2}$. Right plots : train and test estimations of $||u - f \circ g||_{L^2}/||u||_{L^2}$.

Numerical experiments: multiple features

$$u(x) = \exp(\frac{1}{d}\sum_{i=1}^{d}\sin(x_i)e^{\cos(x_i)}), \quad \mathbf{X} \sim \mathcal{U}(] - \frac{\pi}{2}, \frac{\pi}{2}[^8] \quad m = 2$$

50%, 90% and 100% quantiles over 20 realizations.

Left plots : train and test estimations of $\mathcal{J}(g)/||u||_{L^2}$. Right plots : train and test estimations of $||u - f \circ g||_{L^2}/||u||_{L^2}$.

Introduction

- **2** Measuring the quality of g
- Surrogate one feature
- Ourrogates multiple features
- **5** Numerical experiments
- 6 Conclusion and Perspectives

- Quadratic surrogates with controlled suboptimality
- Works well for m = 1, more mitigated for m > 1.

- $\rightarrow\,$ Structured approach in a Tensor-Network fashion.
- \rightarrow Optimal sampling for g.
- $\rightarrow\,$ Optimal sampling for f , oblivious to g.

- Quadratic surrogates with controlled suboptimality
- Works well for m = 1, more mitigated for m > 1.

- $\rightarrow\,$ Structured approach in a Tensor-Network fashion.
- \rightarrow Optimal sampling for g.
- \rightarrow Optimal sampling for f, oblivious to g.

Thank you !

Bigoni, D., Marzouk, Y., Prieur, C., and Zahm, O. (2022). Nonlinear dimension reduction for surrogate modeling using gradient information.

Information and Inference: A Journal of the IMA, 11(4):1597–1639.

 Constantine, P. G., Dow, E., and Wang, Q. (2014).
 Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces.
 SIAM J. Sci. Comput., 36(4):A1500–A1524.

Fradelizi, M. (2009).

Concentration inequalities for \$s\$-concave measures of dilations of Borel sets and applications.

Electron. J. Probab., 14(none).

References II

Romor, F., Tezzele, M., Lario, A., and Rozza, G. (2022). Kernel-based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method.

Numerical Meth Engineering, 123(23):6000-6027.

- Verdière, R., Prieur, C., and Zahm, O. (2023). Diffeomorphism-based feature learning using Poincaré inequalities on augmented input space.
 - Zhang, G., Zhang, J., and Hinkle, J. (2019).

Learning nonlinear level sets for dimensionality reduction in function approximation.

In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.