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Motivation #1: a flood model

The height H of a river is computed using a simplified flood model
H = (Q/30K)0'6500‘3(Zm _ Zv)0.3

with uncertain inputs K, Q, Zn, Z, having nominal distributions

m K ~ truncated normal
m @ ~ truncated Gumbel

m Zpy, Z, ~ triangulars
Flooding does not occur 95% of the time if

CI0.95(H) < H*

where H, is the altitude of the dyke

Source: [Ste20]
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Motivation #2: a hydrological rainfall-runoff model

The runoff volume R is computed using a simplified SCS hydrological model [Dav19]
R =(P—025)*(P+0.85)*

with uncertain inputs P, S having nominal distributions

Rainfall (P)
m P ~ Gumbel
m S ~ truncated normal | i |
Flooding does not occur 95% of the time if
Vegetation

qo.95(R) < R

—— Runoff (R)
Infiltration (5)1 Soil Surface

where R, is the maximum drainage capacity
of the urban area Soil Layers
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Motivation #3: a thermal hydraulic computer code (nuclear context)

The peak cladding temperature T after a LOCA accident is computed using
CATHARE code

T=0G(X1,...,Xq)
where Xi,..., Xy are uncertain physical inputs having nominal distributions

m truncated normals

m truncated log-normals
m uniforms

m log-uniforms

Safety is guarantied « - 100% of the time if

Maximum cladding temperature (°C)

qa(T) < T

"I'bibme grigu(s)
where T, is a Safety threshold Figure: A single simulation of a transitory. Source: [dP21]
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Commonality of previous cases

In all three cases, we have a (computer) model G

G
X= (Xi,...Xs) <  Y=06(X)
—_—— ———
uncertain input variables output decision variable

with nominal distribution P describing uncertainty on X and a safety criterion

Ga(Y|X ~ Po) < 7. (SCa)
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Commonality of previous cases

In all three cases, we have a (computer) model G

G
X= (Xi,...Xs) <  Y=06(X)
—_—— ———
uncertain input variables output decision variable

with nominal distribution P describing uncertainty on X and a safety criterion

Ga(Y|X ~ Po) < 7. (SCa)

Two possible scenarios:
Po perfectly models uncertainty on X = for safety demonstrations we only
need to show (SC,) for Py
Py is itself uncertain = important to know if (SC,) is verified for all
distributions P “neighboring” the nominal Py (think “P = Py + error”) i.e.
Ga(Y|X ~P) <7,
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Sensitivity analysis vs. Robustness analysis

Sensitivity Analysis

Uncertainty on X is described by a fixed distribution Pg, the map
XcR! S YR (SA)

propagates uncertainty from X to Y, quantified using sensitivity indices (Sobol,
HSIC,...)

Robustness Analysis

Uncertainty on Py itself [DVGIP21, Ste20] brings us to consider the operator

P e Mi(RY) T GuP € My(R) (RA)

Only a quantile of G4P is of interest (or another Qol). Sensitivity of P — g, (G4P)

around Py is quantified using robustness indices (for instance PLI, [LSA*15])
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PhD project objectives

Main objective: Given G, study the sensitivity of the map
P € Mi(R?) — go(Y|X ~ P)
around Py, this requires to develop:

a perturbation method for changing Py to P (How? With what? In what space?)
an estimation method for the quantile

qa(Y’X ~ P)

for all distributions P “around” Py, with a reasonable evaluation of G
a confidence interval I, 5 for the latter i.e.

]P’(qa(Y|X ~P)e /An,ﬁ> ~ B

an optimization algorithm for computing robustness indices
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DISTRIBUTIONAL PERTURBATION METHOD
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Assumptions and first remarks

Assumption #1: Pg assumed univariate for illustration

It is not computationally feasible to verify the safety criterion (SC,)
qa(Y|X ~ P) < Tu

for all P in M;(R)

Assumption #2: Pg is in a parametric family P and P are restricted to it i.e.
PepP= {PG}GEO and Po = P90
This allows to restrict the following map to P € M;(R)

Pg — qa(Y|X ~ P@)
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Which distance for defining perturbations ?

Definition (d-perturbations)

Given a distance d on P, a -perturbation of Py, is any other Py in P such that
d(Pgy, Po) =0

In other words, all distributions Py in the sphere S(Py,, ) are equivalent perturbations
of Pgo
Most distances (or divergences) on the family P = {Py}yco are

m extrinsic to P (Wasserstein [IIBG™24], total variation, f-divergences [LSAT15], MMD,...)

m or parametrization-dependent (L” distances on ©, Mahalanobis distance,...)

A good candidate for d is the [GSSI22] which is both intrinsic to
P and invariant under reparametrization
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Definition of the Fisher-Rao distance

The Fisher-Rao distance has both a statistical and geometric origin
Statistics: CLT for the maximum likelihood estimator «/9\,, implies
n t(0n — 0.)lg, (B — 0.) &5 32

where Iy, is the Fisher information for P defined as the Hessian of the relative
entropy of Py from Py_ i.e.

82

——[D(PyIPs, )],
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Definition of the Fisher-Rao distance

The Fisher-Rao distance has both a statistical and geometric origin
Statistics: CLT for the maximum likelihood estimator «/9\,, implies
n t(0n — 0.)lg, (B — 0.) &5 32

where Iy, is the Fisher information for P defined as the Hessian of the relative
entropy of Py from Py_ i.e.

82
b. = 55 [D(PyIPo.)]

Geometry: The function 6 — Iy can be seen as a local scalar product (Riemannian
metric) on P allowing to define a (information) geometry. In particular, the notion of
distance on P as the “length of the shortest path”

1
d(Py,,Py,) = inf {/ tg, - lo, - 05 ds | (0s)s curve linking 6o to 0 }
(Pogs Poy) - | (09) :
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lllustration of this perturbation method

Spheres in the normal and Gumbel family represented in the parameter space
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Normal family: sphere centered at N(0,1) Gumbel family: sphere centered at Gumb(0, 1)

with radius § = 0.5 (i = mean, o = std) with radius § = 0.5 (m = location, s = scale)

Figure: Parameters on the red sphere correspond to the perturbed distributions Py of the
nominal Py,
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lllustration of this perturbation method

[llustration of the §-perturbed densities in the normal and Gumbel family for § = 0.1

00

Normal family: a few J—perturbations of Gumbel family: a few §-perturbations of
N(0,1) for 6 = 0.1 Gumb(0,1) for 6 = 0.1

Figure: Densities in red represent perturbed distributions Py of the nominal Py,
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lllustration of this perturbation method

[llustration of the §-perturbed densities in the normal and Gumbel family for § = 0.3

Normal family: a few J—perturbations of Gumbel family: a few §-perturbations of
N(0,1) for 6 = 0.3 Gumb(0,1) for 6 = 0.3

Figure: Densities in red represent perturbed distributions Py of the nominal Py,
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lllustration of this perturbation method

[llustration of the §-perturbed densities in the normal and Gumbel family for § = 0.5

0.0 =

00

-2 1 o 1 2

Normal family: a few J—perturbations of Gumbel family: a few §-perturbations of
N(0,1) for 6 = 0.5 Gumb(0,1) for 6 = 0.5

Figure: Densities in red represent perturbed distributions Py of the nominal Py,
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ESTIMATION AND CONFIDENCE INTERVALS FOR QUANTILES
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Direct vs. Importance sampling estimation

Reminder: Study the sensitivity of the map

P— qo(Y|X ~P)

for perturbed distributions P around Pg

’ Direct method \

Importance sampling

sample X = {X' ... X"} from P
evaluate G on X

estimate go(Y|X ~ P) with the
empirical quantile

sample Xy = {X!,..., X"} from Py
evaluate G on Aj

estimate ¢o(Y|X ~ P) with an
importance sampling technique

Not feasible for all P if G is expensive

Po is used as an instrumental measure in
an importance sampling scheme
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Quantile estimation

Henceforth, we assume P < Py and denote the likelihood ratio

L(x) = (;]PPO(X)

of P against Py. The quantile go(Y|X ~ P) is estimated as
Ga(P) =inf{t € R | F(t) > a}

where F is the self-normalized estimator of the distribution function F of YIX ~P
~ 1 n .
F(t) = = 2o LX) gxi)<
27:1 L(X ) ; (X<t
which is built on the fixed sample Xy = {X!, ..., X"} from Py
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Central limit theorem and confidence intervals

Theorem (CLT for IS quantile estimator, [Gly96

If F is differentiable with positive derivative at q,(Y|X ~ P), then

ﬁ(aa(P) — ga(Y|X ~ P)) It N(0, 02)

where ) )
52 Epo[L(X)*(Le(x)<ga(vIX~P) — @)7]
F/(qoz(y|x ~ P))

Denoting I - = Gu(P) £ £/+/n, the CLT implies an asymptotic confidence interval
3 )<2
lim P(qa(Y\X ~P) e /,,,6> = (2m2)1/2/ e 207 dx

A consistent estimator of o2 is given in [CN10]
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A generalization to Wilks approach

If Y1,..., Yn ~ G4Po, then qa(Y|X ~ Pg) & Y{{na) and

]P’(qa(Y]X ~ Po) € [V, Y(J-)]> =I(i,n—i+1)—l(,n—j+1)

where Y(1) < ... < Y{,) and lu(p, q) is the incomplete Beta function [DN04]
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A generalization to Wilks approach

If Yi,..., Yy~ G#Po, then qa(Y|X ~ Po) ~ Y([na]) and
P(qa(Y!X ~ Po) € [Yi), Y(f)]) =l(i,n—i+1)=h(,n-j+1)
where Y(1) < ... < Y{,) and lu(p, q) is the incomplete Beta function [DN04]

Theorem (Non-asymptotic Cl for perturbed quantiles)
For n and Y1,..., Y, ~ Gy Py we have

P(qa(YIX ~ P) € [Y(i), Y(jg)]) 2 Bre

where
B [, depends on assumptions on the likelihood L
|| \/(,'E) = /q\a_g(P) and Y(js) = E,\a-l—E(P)
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Consequence of Hoeffding's concentration inequality

For instance, a bounded likelihood gives the following

Ifa< L < b we have

P(qa(Y|X ~P) ¢ /An,E) >1—exp <—(b - aﬁgf; - 5)2)

. 3 2ne?
P\ -2l —a-2)2
where i\n7g = [Y(is)a Y(js)]
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Consequence of Bennett's concentration inequality

Here a control on Ep,[L?] is assumed. We denote h(u) = (1 + u)log(1l + u) — u

Ifa<L<band Epo[Lz] < v we have

P(qa(Y|X ~ P) e IA,,’E) >1—exp ( ny+h <a+6)> — exp (—n%h (E>)
a+ V4 b_ V_

where a; and b_ are given by a; = —a(—a +¢€) and b_ = b(1 — a — ¢), and vy and
v_ are defined as

vy = min{y, ba}(l — aLe) +v(a® 4+ F ae)

and in,a = [Y(is)’ Y(Js)]
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Sub-Gaussian and sub-Gamma concentration inequalities

Here L is assumed light-tailed: sub-Gaussian or sub-Gamma. Denote h;(u) = v?/2

and ha(u) =14 u—+/1+2u

Proposition

If L is sub-Gaussian (k = 1) with constant v or sub-Gamma (k = 2) with constants
v,c > 0 then

P(qa(Y|X ~ P) € IA,,ya) >1—exp (—%hk (%)) — exp (—%hk <%)>
where vy, v_ are given by
vi =(a—¢)’v and v_=(1-a—c¢),
¢y c_ aregiven by cy = (a—e)c, c. = (1—a—¢)c and - = [Y(iy, Y]
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Tips for practionners

] Hoeffding \ Bennett \ sub-Gaussian \ sub-Gamma \
a < L < b and 2, 2, /21
a<L<hb Ep, [L2] < v Epo[e’\L] < eNv/2 EPO[eAL] < Nv/2(1-c))

Table: Summary of assumptions for each inequality

Hoeffding = sub-Gaussian with v = (b — a)?/4
Bennett is better than Hoeffding if Ep,[L?] =v < b—a
sub-Gaussian with v always better than sub-Gamma with v (and any c¢)

L is heavy-tailed (i.e. Ep,[L™] = c0) == no exponential bounds can be obtained
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Back to the flood model

The height H of a river is computed using the previously defined model. We study
robustness of

fQ — qa(H‘Q ~ fQ)
w.r.t. perturbations of fg to fg 1 and fg

Using an iid sample from
Po = fk ® fo ® fz, ® fz,, we estimate and — ot
build Cls for

qa(H‘Q ~ fQJ) 0.0005

0.0004

0.0003

m fg,fg1,fg o are truncated Gumbel
distributions

0.0002
0.0001

m K ~ fx truncated normal

0 500 1000 1500 2000 2500 3000

m Zy, Z, ~ fz,,fz, triangulars
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Back to the flood model

Determining the constants:
ma<L=fg1/fqg <bwhere ar 0.004 and b ~ 2.69
m v =Ep,[L?] ~1.49

estimation | Hoeffding Bennett
a=0.5 2.86m [2.83,2.92] | [2.80,2.95]
a=0.75 3.42m [3.33,3.50] | [3.30,3.54]
a=095| 4.29m |[3.97,5.31] | [3.95,5.45]

Table: Estimation and 95% non-asymptotic confidence intervals for g, (H|Q ~ fg 1) with a
sample of size n=5000
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Back to the flood model

Determining the constants:
ma<Ll=fgo/fog <bwherear 0.40 and b~ 5.93
m v =Ep,[L?] ~1.38

estimation | Hoeffding Bennett
a=0.5 1.99m [1.88,2.10] | [1.90,2.08]
a=075| 256m |[239,2.77] | [2.45,2.68]
a=095| 354m | [2.98,00) | [3.18,4.52]

Table: Estimation and 95% non-asymptotic confidence intervals for g, (H|Q ~ fg2) with a
sample of size n=5000
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Back to the flood model

5.5

¢ 95% confidence bounds
e estimation qo.os5(H|Q ~ fg,2)

River height (m)
w A A !
n o un =)

w
=}

2.5

0 10 20 30 40 50
Number of repetitions

Figure: 50 estimations and 95% non-asymptotic Cls for gg.o5(H|Q ~ fg2) with a sample of
size n=5000 using Bennett's inequality
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Industrial safety application

We look at the peak cladding temperature T after a LOCA computed using
CATHARE T = G(Xi,...,Xs6). We study robustness of

fXas — qa(T|X38 ~ szs)

w.r.t. perturbations of fx,, to fx,, s

Using an iid sample from Py = fx, ® ... ® fx,, —
we estimate and build Cls for — e s

9o (T X38 ~ fxs5.5)

B fx,, and fx,, 5 are truncated normals

m the other fx; are either truncated normal,
truncated log-normal, uniform or
log-uniform
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Industrial safety application

Determining the constants:
B a<L="fxys/fxy; < bwhere a~0.49 and b~ 12.2
mv=Ep,[L?] ~1.76

estimation Hoeffding Bennett

a=05 || 209.5°C | [292.4,307.6] | [296.1,303.1]
a=0.75| 328.5°C | [310.3,355.6] | [320.0,337.8]
a=0.95| 382.4°C [336.0,00) | [362.1,661.5]

Table: Estimation and 95% non-asymptotic confidence intervals for qo (T | X35 ~ fx,,,6) with a
sample of size n=5000
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Industrial safety application

Determining the constants:
B a< L ="fx,s/fxys < bwhere a~0.49 and b~ 12.2
mv=Ep,[L?] ~1.76

estimation Hoeffding Hoeffding Bennett Bennett
(n = 10%) (n=5000) | (n=10%) (n=5000) | (n=10%)
a=05 300.1°C [292.4,307.6]| [294.7,305.9]| [296.0,303.1]| [297.4,302.6]
a=0.75 || 329.9°C [310.3,355.6] | [314.5,348.8]| [319.9,337.8]| [323.3,336.0]
a=0.95 || 382.3°C [336.0, ) [345.7, 00) [362.0,661.5]| [368.0,414.9]
Table: Estimation and 95% confidence intervals for g, (T|X3g ~ fx.,,5) With a
sample of size and n=10000
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Final remarks

’ Conclusion \ Perspectives ‘

m Presented the mathematical
framework for robustness
analysis methods

m |llustrated the Fisher-Rao
perturbation method on
parametric families

m Optimization algorithms for
computing robustness indices

m Advising Pierre Schatz
(internship) on the Fisher-Rao
perturbation method for

dependent inputs
m Built estimators and

non-asymptotic Cls for
quantiles g, (Y|X ~ P)
generalizing Wilks method
(preprint in preparation)

m Maximum level 6,5 for
Fisher-Rao perturbation beyond
which RA is not necessary
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28 /24



Fundamental lemma

Under continuity of F, the desired probability can be rewritten as

(Y(,g) < gn < Y(J5 (Z ZJr < 0) (Z Z,jé > 0> , (1)
i=1

where (ZE)1<,<,, and ( ,5)1<,<,, are iid random variables each defined as

Zl = L(Y)(Iy,cq, —a+€) and  Zip = L(Y;)(y,<q, —a—&).

In addition, the variables Ziﬂ:£ have mean +£.
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Contribution: application to truncated distributions

Engineers work with bounded domains = need to compute the Fisher-Rao distance
on truncated parametric families i.e.

fo(x)
f@,ab(X) = lxe[a,b]
I foly)dy

How to do that ?

Compute the Fisher information (either explicitly or numerically),

Numerically solve an ordinary differential equation with coefficients involving
the Fisher information

We considered a few well-known families: truncated normal, truncated log-normal,
truncated Gumbel, Beta, triangular, ...

Preprint [KBC"24] submitted and under review (arXiv: 2407.21542)
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Contribution: application to truncated distributions

Perturbations in the truncated normal family
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m—center

2.0
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1.0

0'5 01

0.0
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.

H Perturbations of a truncated N'(0,1) where § = 0.4
Sphere centered at (0,1) for 6 = 0.4

Figure: Truncated normal family on [-2,2]
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Contribution: application to truncated distributions

Similarly for the truncated log-normal family (the Fisher information is the same as the
truncated normal family)

o 1 2 3 4 5 0 1 2 3 4 5

Perturbations (6 = 0.3) of log V(0, 1) Perturbations (§ = 0.3) of truncated log A/(0,1)

Figure: Perturbations of a log-normal density in the usual and truncated case
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Contribution: application to truncated distributions

For the truncated Gumbel family

-2 -1 [4 1 2 -2 -1 0 1 2

Perturbations (6 = 0.5) of Gumb(0, 1) Perturbations (§ = 0.5) of truncated Gumb(0, 1)

Figure: Perturbations of a Gumbel density in the usual and truncated case
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