Development of a Distributional Robustness Method for Analysis of Computer Codes RT-UQ, PhD students day, Grenoble

B. B. Ketema^{1,2}, N. Bousquet^{1,3,4}, F. Costantino², F. Gamboa², B. looss^{1,2,3}, R. Sueur¹

¹EDF R&D, ²IMT, ³SINCLAIR AI Lab, ⁴LPSM

April 22nd 2025

Motivation #1: a flood model

The height H of a river is computed using a simplified flood model

$$H = (Q/30K)^{0.6} 50^{0.3} (Z_m - Z_v)^{0.3}$$

with uncertain inputs K, Q, Z_m, Z_v having nominal distributions

- $K \sim \text{truncated normal}$
- $Q \sim \text{truncated Gumbel}$
- $Z_m, Z_v \sim \text{triangulars}$

Flooding does not occur 95% of the time if

 $q_{0.95}(H) \leq H_*$

where H_* is the altitude of the dyke

・ロト ・四ト ・ヨト ・ヨト

Motivation #2: a hydrological rainfall-runoff model

The runoff volume R is computed using a simplified SCS hydrological model [Dav19]

$$R = (P - 0.2S)^2 (P + 0.8S)^{-1}$$

with uncertain inputs P, S having nominal distributions

• $P \sim \text{Gumbel}$

• $S \sim \text{truncated normal}$

Flooding does not occur 95% of the time if

 $q_{0.95}(R) \leq R_*$

where R_* is the maximum drainage capacity of the urban area

Rainfall (P)

Motivation #3: a thermal hydraulic computer code (nuclear context)

The **peak cladding temperature** T after a LOCA accident is computed using CATHARE code

 $T = G(X_1,\ldots,X_d)$

where X_1, \ldots, X_d are uncertain physical inputs having nominal distributions

- truncated normals
- truncated log-normals
- uniforms
- log-uniforms

Safety is guarantied $\alpha \cdot 100\%$ of the time if

$$q_{\alpha}(T) \leq T_*$$

where T_* is a safety threshold

Commonality of previous cases

In all three cases, we have a (computer) model G

with nominal distribution P_0 describing uncertainty on X and a safety criterion

$$q_{lpha}(Y|oldsymbol{X}\sim oldsymbol{\mathsf{P}}_{0})\leq au_{*}$$
 (SC $_{lpha}$)

Commonality of previous cases

In all three cases, we have a (computer) model G

with nominal distribution P_0 describing uncertainty on \boldsymbol{X} and a safety criterion

$$q_{lpha}(Y|X \sim \mathsf{P}_0) \leq au_*$$
 (SC_{\alpha})

Two possible scenarios:

- **1** P_0 perfectly models **uncertainty** on $X \implies$ for safety demonstrations we only need to show (SC_{α}) for P_0
- **2** P_0 is itself uncertain \implies important to know if (SC_α) is verified for all distributions **P** "neighboring" the nominal P_0 (think "**P** = P_0 + error") i.e.

$$q_{lpha}(Y|oldsymbol{X}\sim {\sf P}) \leq au_*$$

5 / 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の()

Sensitivity Analysis

Uncertainty on \boldsymbol{X} is described by a fixed distribution P_0 , the map

$$\boldsymbol{X} \in \mathbb{R}^d \xrightarrow{G} \boldsymbol{Y} \in \mathbb{R}$$
 (SA)

propagates uncertainty from X to Y, quantified using sensitivity indices (Sobol, HSIC,...)

Robustness Analysis

Uncertainty on P_0 itself [DVGIP21, Ste20] brings us to consider the operator

$$\mathsf{P} \in \mathcal{M}_1(\mathbb{R}^d) \stackrel{\mathcal{G}_\#}{\longmapsto} \mathcal{G}_\#\mathsf{P} \in \mathcal{M}_1(\mathbb{R})$$
 (RA)

Only a quantile of $G_{\#}P$ is of interest (or another Qol). Sensitivity of $P \mapsto q_{\alpha}(G_{\#}P)$ around P_0 is quantified using robustness indices (for instance PLI, [LSA+15]), $P \mapsto Q_{\alpha}(G_{\#}P)$

PhD project objectives

Main objective: Given G, study the sensitivity of the map $\mathsf{P}\in\mathcal{M}_1(\mathbb{R}^d)\longmapsto q_\alpha(Y|\boldsymbol{X}\sim\mathsf{P})$

around P_0 , this requires to develop:

a perturbation method for changing P₀ to P (How? With what? In what space?)
 an estimation method for the quantile

$$q_lpha(Y|oldsymbol{X}\sim {\sf P})$$

for all distributions P "around" P₀, with a reasonable evaluation of G **3** a confidence interval $\hat{l}_{n,\beta}$ for the latter i.e.

$$\mathbb{P}\left(q_{lpha}(Y|\boldsymbol{X}\sim \boldsymbol{\mathsf{P}})\in \hat{l}_{n,eta}
ight)pproxeta$$

4 an optimization algorithm for computing robustness indices

DISTRIBUTIONAL PERTURBATION METHOD

Assumption #1: P_0 assumed univariate for illustration

It is not computationally feasible to verify the safety criterion (SC_{α})

$$q_lpha(Y|oldsymbol{X}\sim {\sf P}) \leq au_*$$

for all P in $\mathcal{M}_1(\mathbb{R})$

Assumption #2: P_0 is in a parametric family \mathcal{P} and P are restricted to it i.e.

$$\mathsf{P} \in \mathcal{P} = \{\mathsf{P}_{\theta}\}_{\theta \in \Theta}$$
 and $\mathsf{P}_0 = \mathsf{P}_{\theta_0}$

This allows to restrict the following map to $\mathcal{P} \subset \mathcal{M}_1(\mathbb{R})$

$$\mathsf{P}_{ heta} \longmapsto q_{lpha}(Y | oldsymbol{X} \sim \mathsf{P}_{oldsymbol{ heta}})$$

Definition (δ -perturbations)

Given a distance d on \mathcal{P} , a δ -perturbation of P_{θ_0} is any other P_{θ} in \mathcal{P} such that

 $d(\mathsf{P}_{\theta_0}, \mathsf{P}_{\theta}) = \delta$

In other words, all distributions P_{θ} in the sphere $S(P_{\theta_0}, \delta)$ are equivalent perturbations of P_{θ_0}

Most distances (or divergences) on the family $\mathcal{P} = \{ \mathsf{P}_{\theta} \}_{\theta \in \Theta}$ are

- extrinsic to \mathcal{P} (Wasserstein [IIBG⁺24], total variation, *f*-divergences [LSA⁺15], MMD,...)
- or parametrization-dependent (\mathbb{L}^{p} distances on Θ , Mahalanobis distance,...)

A good candidate for d is the Fisher-Rao distance [GSSI22] which is both intrinsic to \mathcal{P} and invariant under reparametrization

Definition of the Fisher-Rao distance

The Fisher-Rao distance has both a statistical and geometric origin

<u>Statistics</u>: CLT for the maximum likelihood estimator $\hat{\theta}_n$ implies

$$n^{t}(\widehat{\theta}_{n}-\theta_{*})I_{\theta_{*}}(\widehat{\theta}_{n}-\theta_{*}) \xrightarrow{\text{dist.}} \chi^{2}$$

where I_{θ_*} is the Fisher information for \mathcal{P} defined as the Hessian of the relative entropy of P_{θ} from P_{θ_*} i.e.

$$I_{\theta_*} = \frac{\partial^2}{\partial \theta^2} \big[\mathcal{D}(\mathsf{P}_{\theta} | \mathsf{P}_{\theta_*}) \big]_{\theta = \theta_*}$$

Definition of the Fisher-Rao distance

The Fisher-Rao distance has both a statistical and geometric origin

<u>Statistics</u>: CLT for the maximum likelihood estimator $\hat{\theta}_n$ implies

$$n^{t}(\widehat{\theta}_{n}-\theta_{*})I_{\theta_{*}}(\widehat{\theta}_{n}-\theta_{*}) \xrightarrow{\text{dist.}} \chi^{2}$$

where I_{θ_*} is the Fisher information for \mathcal{P} defined as the Hessian of the relative entropy of P_{θ} from P_{θ_*} i.e.

$$I_{ heta_*} = rac{\partial^2}{\partial heta^2} ig[\mathcal{D}(\mathsf{P}_{ heta} | \mathsf{P}_{ heta_*}) ig]_{ heta = heta_*}$$

<u>Geometry</u>: The function $\theta \mapsto I_{\theta}$ can be seen as a local scalar product (Riemannian metric) on \mathcal{P} allowing to define a (information) geometry. In particular, the notion of distance on \mathcal{P} as the "length of the shortest path"

$$d(\mathsf{P}_{\theta_0},\mathsf{P}_{\theta_1}) = \inf\left\{\int_0^1 \sqrt{t\dot{\theta}_s \cdot I_{\theta_s} \cdot \dot{\theta}_s} \ ds \ \Big| \ (\theta_s)_s \text{ curve linking } \theta_0 \text{ to } \theta_1\right\}$$

Spheres in the normal and Gumbel family represented in the parameter space

Normal family: sphere centered at $\mathcal{N}(0,1)$ Gu with radius $\delta = 0.5$ ($\mu = \text{mean}, \sigma = \text{std}$) with

Gumbel family: sphere centered at Gumb(0, 1) with radius $\delta = 0.5$ (m =location, s = scale)

Figure: Parameters on the red sphere correspond to the **perturbed distributions** P_{θ} of the **nominal** P_{θ_0}

Illustration of the δ -perturbed densities in the normal and Gumbel family for $\delta = 0.1$

Normal family: a few δ -perturbations of Gumbel family: a few δ -perturbations of $\mathcal{N}(0,1)$ for $\delta = 0.1$ Gumb(0,1) for $\delta = 0.1$

Figure: Densities in red represent **perturbed distributions** P_{θ} of the **nominal** P_{θ_0}

Illustration of the δ -perturbed densities in the normal and Gumbel family for $\delta = 0.3$

Normal family: a few δ -perturbations of Gumbel family: a few δ -perturbations of $\mathcal{N}(0, 1)$ for $\delta = 0.3$ Gumb(0, 1) for $\delta = 0.3$

Figure: Densities in red represent **perturbed distributions** P_{θ} of the **nominal** P_{θ_0}

Illustration of the δ -perturbed densities in the normal and Gumbel family for $\delta = 0.5$

Normal family: a few δ -perturbations of Gumbel family: a few δ -perturbations of $\mathcal{N}(0, 1)$ for $\delta = 0.5$ Gumb(0, 1) for $\delta = 0.5$

Figure: Densities in red represent **perturbed distributions** P_{θ} of the **nominal** P_{θ_0}

ESTIMATION AND CONFIDENCE INTERVALS FOR QUANTILES

Direct vs. Importance sampling estimation

Reminder: Study the sensitivity of the map

 $\mathsf{P} \longmapsto q_{lpha}(Y|\boldsymbol{X} \sim \mathsf{P})$

for perturbed distributions P around P_0

Direct method	Importance sampling
1 sample $\mathcal{X} = \{ oldsymbol{X}^1, \dots, oldsymbol{X}^n \}$ from ${\sf P}$	1 sample $\mathcal{X}_0 = \{ oldsymbol{\mathcal{X}}^1, \dots, oldsymbol{\mathcal{X}}^n \}$ from P_0
2 evaluate G on \mathcal{X}	2 evaluate G on \mathcal{X}_0
3 estimate $q_lpha(Y m{X}\sim {\sf P})$ with the empirical quantile	3 estimate $q_{lpha}(Y m{X}\sim {\sf P})$ with an importance sampling technique
Not feasible for all P if G is expensive	P ₀ is used as an instrumental measure in an importance sampling scheme
	< ロ > < 回 > < 三 > < 三 > < 三

Henceforth, we assume $\mathsf{P}\ll\mathsf{P}_0$ and denote the likelihood ratio

$$L(x) := \frac{d\mathsf{P}}{d\mathsf{P}_0}(x)$$

of P against P₀. The quantile $q_{\alpha}(Y|X \sim P)$ is estimated as

$$\widehat{q}_{lpha}(\mathsf{P}) = \inf\{t \in \mathbb{R} \mid \widehat{F}(t) \geq lpha\}$$

where \widehat{F} is the self-normalized estimator of the distribution function F of $Y|X \sim P$

$$\widehat{F}(t) = \frac{1}{\sum_{i=1}^{n} \boldsymbol{L}(\boldsymbol{X}^{i})} \sum_{i=1}^{n} \boldsymbol{L}(\boldsymbol{X}^{i}) \mathbf{1}_{G(\boldsymbol{X}^{i}) \leq t}$$

which is built on the fixed sample $\mathcal{X}_0 = \{\boldsymbol{X}^1, ..., \boldsymbol{X}^n\}$ from P_0

Central limit theorem and confidence intervals

Theorem (CLT for IS quantile estimator, [Gly96])

If F is differentiable with positive derivative at $q_{lpha}(Y|m{X}\simm{P})$, then

$$\sqrt{n} igg(\widehat{q}_lpha(oldsymbol{P}) - q_lpha(Y|oldsymbol{X} \sim oldsymbol{P}) igg) \stackrel{dist.}{\longrightarrow} \mathcal{N}(0,\sigma^2)$$

where

$$\sigma^{2} = \frac{\mathbb{E}_{\boldsymbol{P}_{0}}[\boldsymbol{L}(\boldsymbol{X})^{2}(\boldsymbol{1}_{\boldsymbol{G}(\boldsymbol{X}) \leq \boldsymbol{q}_{\alpha}(\boldsymbol{Y}|\boldsymbol{X} \sim \boldsymbol{P}) - \alpha)^{2}]}{F'(\boldsymbol{q}_{\alpha}(\boldsymbol{Y}|\boldsymbol{X} \sim \boldsymbol{P}))}$$

Denoting $\hat{l}_{n,\varepsilon} = \hat{q}_{\alpha}(\mathsf{P}) \pm \varepsilon / \sqrt{n}$, the CLT implies an asymptotic confidence interval

$$\lim_{n\to\infty}\mathbb{P}\bigg(q_{\alpha}(Y|\boldsymbol{X}\sim\boldsymbol{\mathsf{P}})\in\hat{l}_{n,\varepsilon}\bigg)=(2\pi\sigma^2)^{-1/2}\int_{-\varepsilon}^{\varepsilon}e^{-\frac{x^2}{2\sigma^2}}dx$$

A consistent estimator of σ^2 is given in [CN10]

・ロト ・四ト ・ヨト ・ヨト ・ヨー

A generalization to Wilks approach

If
$$Y_1, \ldots, Y_n \sim G_{\#} \mathsf{P}_0$$
, then $q_{\alpha}(Y | \mathbf{X} \sim \mathsf{P}_0) \approx Y_{([n\alpha])}$ and
 $\mathbb{P}\Big(q_{\alpha}(Y | \mathbf{X} \sim \mathsf{P}_0) \in [Y_{(i)}, Y_{(j)}]\Big) = I_{\alpha}(i, n - i + 1) - I_{\alpha}(j, n - j + 1)$

where $Y_{(1)} \leq \ldots \leq Y_{(n)}$ and $I_{\alpha}(p,q)$ is the incomplete Beta function [DN04]

A generalization to Wilks approach

If
$$Y_1, \ldots, Y_n \sim G_{\#} \mathsf{P}_0$$
, then $q_{\alpha}(Y | \mathbf{X} \sim \mathsf{P}_0) \approx Y_{([n\alpha])}$ and
 $\mathbb{P}\Big(q_{\alpha}(Y | \mathbf{X} \sim \mathsf{P}_0) \in [Y_{(i)}, Y_{(j)}]\Big) = I_{\alpha}(i, n - i + 1) - I_{\alpha}(j, n - j + 1)$

where $Y_{(1)} \leq \ldots \leq Y_{(n)}$ and $I_{\alpha}(p,q)$ is the incomplete Beta function [DN04]

Theorem (Non-asymptotic CI for perturbed quantiles)

For n fixed and $Y_1, \ldots, Y_n \sim G_{\#} \textbf{P}_0$ we have

$$\mathbb{P}igg(q_lpha(oldsymbol{Y}|oldsymbol{X}\simoldsymbol{P})\inigg[Y_{(i_arepsilon)},Y_{(j_arepsilon)}igg]igg)\geqeta_{n,arepsilon}$$

where

• $\beta_{n,\varepsilon}$ depends on assumptions on the likelihood L

•
$$Y_{(i_{\varepsilon})} = \widehat{q}_{\alpha-\varepsilon}(P)$$
 and $Y_{(j_{\varepsilon})} = \widehat{q}_{\alpha+\varepsilon}(P)$

৩৭.ে 17 / 24

For instance, a bounded likelihood gives the following

Proposition

If $a \leq \mathbf{L} \leq b$ we have

$$\mathbb{P}igg(q_{lpha}(Y|m{X} \sim m{P}) \in \hat{l}_{n,arepsilon}igg) \geq 1 - \expigg(-rac{2narepsilon^2}{(b-a)^2(lpha-arepsilon)^2}igg) - \expigg(-rac{2narepsilon^2}{(b-a)^2(1-lpha-arepsilon)^2}igg)$$

where $\hat{I}_{n,arepsilon} = \left[Y_{(i_arepsilon)}, Y_{(j_arepsilon)}
ight]$

Consequence of Bennett's concentration inequality

Here a control on $\mathbb{E}_{\mathbf{P}_0}[\mathbf{L}^2]$ is assumed. We denote $h(u) = (1+u)\log(1+u) - u$

Proposition

If $a \leq L \leq b$ and $\mathbb{E}_{P_0}[L^2] \leq \nu$ we have

$$\mathbb{P}\bigg(q_{\alpha}(\boldsymbol{Y}|\boldsymbol{X} \sim \boldsymbol{P}) \in \hat{l}_{n,\varepsilon}\bigg) \geq 1 - \exp\left(-\frac{n\nu_{+}}{\boldsymbol{a}_{+}^{2}}h\left(\frac{\boldsymbol{a}_{+}\varepsilon}{\nu_{+}}\right)\right) - \exp\left(-\frac{n\nu_{-}}{\boldsymbol{b}_{-}^{2}}h\left(\frac{\boldsymbol{b}_{-}\varepsilon}{\nu_{-}}\right)\right)$$

where a_+ and b_- are given by $a_+ = -a(-\alpha + \varepsilon)$ and $b_- = b(1 - \alpha - \varepsilon)$, and ν_+ and ν_- are defined as

$$\nu_{\pm} = \min\{\nu, b\alpha\}(1 - \alpha \pm \varepsilon) + \nu(\alpha^2 + \varepsilon^2 \mp \alpha \varepsilon)$$

and $\hat{I}_{n,\varepsilon} = \left[Y_{(i_{\varepsilon})}, Y_{(j_{\varepsilon})}\right]$

Sub-Gaussian and sub-Gamma concentration inequalities

Here *L* is assumed light-tailed: sub-Gaussian or sub-Gamma. Denote $h_1(u) = u^2/2$ and $h_2(u) = 1 + u - \sqrt{1 + 2u}$

Proposition

If L is sub-Gaussian (k = 1) with constant ν or sub-Gamma (k = 2) with constants ν , c > 0 then

$$\mathbb{P}\Big(q_{lpha}(\boldsymbol{Y}|\boldsymbol{X}\sim \boldsymbol{P})\in \hat{l}_{n,arepsilon}\Big)\geq 1-\exp\left(-rac{n
u_{+}}{c_{+}^{2}}h_{k}\left(rac{c_{+}arepsilon}{
u_{+}}
ight)
ight)-\exp\left(-rac{n
u_{-}}{c_{-}^{2}}h_{k}\left(rac{c_{-}arepsilon}{
u_{-}}
ight)
ight)$$

where ν_+, ν_- are given by

$$u_+ = (lpha - arepsilon)^2
u$$
 and $u_- = (1 - lpha - arepsilon)^2
u,$

 c_+, c_- are given by $c_+ = (\alpha - \varepsilon)c$, $c_- = (1 - \alpha - \varepsilon)c$ and $\hat{I}_{n,\varepsilon} = \begin{bmatrix} Y_{(i_{\varepsilon})}, Y_{(j_{\varepsilon})} \end{bmatrix}$

Hoeffding	Bennett	sub-Gaussian	sub-Gamma
$a \leq L \leq b$	$a \leq L \leq b$ and $\mathbb{E}_{P_0}[L^2] \leq \nu$	$\mathbb{E}_{P_0}[e^{\lambda \boldsymbol{L}}] \leq e^{\lambda^2 u/2}$	$\mathbb{E}_{P_0}[e^{\lambda \boldsymbol{L}}] \leq e^{\lambda^2 u/2(1-c\lambda)}$

Table: Summary of assumptions for each inequality

- **1** Hoeffding \implies sub-Gaussian with $\nu = (b-a)^2/4$
- 2 Bennett is better than Hoeffding if $\mathbb{E}_{\mathbf{P}_0}[\mathbf{L}^2] = \nu \ll b a$
- 3 sub-Gaussian with ν always better than sub-Gamma with ν (and any c)
- **4 L** is heavy-tailed (i.e. $\mathbb{E}_{P_0}[L^m] = \infty$) \implies no exponential bounds can be obtained

Back to the flood model

The **height** H of a river is computed using the previously defined model. We study **robustness** of

 $f_Q \longmapsto q_{lpha}(H|Q \sim f_Q)$

w.r.t. perturbations of f_Q to $f_{Q,1}$ and $f_{Q,2}$

Using an iid sample from $\mathbf{P}_0 = f_K \otimes f_Q \otimes f_{Z_m} \otimes f_{Z_v}$, we estimate and build CIs for

 $q_{lpha}(H|Q \sim f_{Q,i})$

- *f_Q*, *f_{Q,1}*, *f_{Q,2}* are truncated Gumbel distributions
- $K \sim f_K$ truncated normal
- $Z_m, Z_v \sim f_{Z_m}, f_{Z_v}$ triangulars

Determining the constants:

•
$$a \leq L = \frac{f_{Q,1}}{f_Q} \leq b$$
 where $a \approx 0.004$ and $b \approx 2.69$
• $\nu = \mathbb{E}_{P_0}[L^2] \approx 1.49$

	estimation	Hoeffding	Bennett
lpha= 0.5	2.86m	[2.83, 2.92]	[2.80, 2.95]
$\alpha = 0.75$	3.42m	[3.33, 3.50]	[3.30, 3.54]
$\alpha = 0.95$	4.29m	[3.97, 5.31]	[3.95, 5.45]

Table: Estimation and 95% non-asymptotic confidence intervals for $q_{\alpha}(H|Q \sim f_{Q,1})$ with a sample of size n=5000

Determining the constants:

•
$$a \leq L = f_{Q,2}/f_Q \leq b$$
 where $a \approx 0.40$ and $b \approx 5.93$
• $\nu = \mathbb{E}_{P_0}[L^2] \approx 1.38$

	estimation	Hoeffding	Bennett
lpha= 0.5	1.99m	[1.88, 2.10]	[1.90, 2.08]
$\alpha = 0.75$	2.56m	[2.39, 2.77]	[2.45, 2.68]
lpha= 0.95	3.54m	$[2.98,\infty)$	[3.18, 4.52]

Table: Estimation and 95% non-asymptotic confidence intervals for $q_{\alpha}(H|Q \sim f_{Q,2})$ with a sample of size n=5000

Back to the flood model

Figure: 50 estimations and 95% non-asymptotic CIs for $q_{0.95}(H|Q \sim f_{Q,2})$ with a sample of size n=5000 using Bennett's inequality

Industrial safety application

We look at the **peak cladding temperature** T after a LOCA computed using CATHARE $T = G(X_1, \ldots, X_{56})$. We study **robustness** of

$$f_{X_{38}} \longmapsto q_{lpha}(T|X_{38} \sim f_{X_{38}})$$

w.r.t. perturbations of $f_{\chi_{38}}$ to $f_{\chi_{38},\delta}$

Using an iid sample from $P_0 = f_{X_1} \otimes \ldots \otimes f_{X_{56}}$, we estimate and build CIs for

 $q_{lpha}(T|X_{38} \sim f_{X_{38},\delta})$

- $f_{X_{38}}$ and $f_{X_{38},\delta}$ are truncated normals
- the other f_{Xi} are either truncated normal, truncated log-normal, uniform or log-uniform

Industrial safety application

Determining the constants:

•
$$a \leq L = f_{X_{38},\delta}/f_{X_{38}} \leq b$$
 where $a \approx 0.49$ and $b \approx 12.2$
• $\nu = \mathbb{E}_{P_0}[L^2] \approx 1.76$

	estimation Hoeffding		Bennett	
lpha= 0.5	299.5°C	[292.4, 307.6]	[296.1, 303.1]	
$\alpha = 0.75$	328.5°C	[310.3, 355.6]	[320.0, 337.8]	
$\alpha = 0.95$	382.4°C	[336.0, ∞)	[362.1, 661.5]	

Table: Estimation and 95% non-asymptotic confidence intervals for $q_{\alpha}(T|X_{38} \sim f_{X_{38},\delta})$ with a sample of size n=5000

Industrial safety application

Determining the constants:

• $a \leq L = f_{X_{38},\delta}/f_{X_{38}} \leq b$ where $a \approx 0.49$ and $b \approx 12.2$ • $\nu = \mathbb{E}_{P_0}[L^2] \approx 1.76$

	estimation $(n=10^4)$	Hoeffding $(n = 5000)$	${\sf Hoeffding}\ (n=10^4)$	$\begin{array}{l} Bennett \\ (n=5000) \end{array}$	${\sf Bennett} \\ (n=10^4)$
lpha= 0.5	300.1°C	[292.4, 307.6]	[294.7, 305.9]	[296.0, 303.1]	[297.4, 302.6]
lpha= 0.75	329.9°C	[310.3, 355.6]	[314.5, 348.8]	[319.9, 337.8]	[323.3, 336.0]
$\alpha = 0.95$	382.3°C	$[336.0,\infty)$	$[345.7,\infty)$	[362.0, 661.5]	[368.0, 414.9]

Table: Estimation and 95% non-asymptotic confidence intervals for $q_{\alpha}(T|X_{38} \sim f_{X_{38},\delta})$ with a sample of size n=5000 and n=10000

Final remarks

Conclusion	Perspectives
 Presented the mathematical framework for robustness analysis methods Illustrated the Fisher-Rao perturbation method on parametric families Built estimators and non-asymptotic Cls for quantiles q_α(Y X ~ P) generalizing Wilks method (preprint in preparation) 	 Optimization algorithms for computing robustness indices Advising Pierre Schatz (internship) on the Fisher-Rao perturbation method for dependent inputs Maximum level δ_{max} for Fisher-Rao perturbation beyond which RA is not necessary

- Fang Chu and Marvin K Nakayama, *Confidence intervals for quantiles and value-at-risk when applying importance sampling*, Proceedings of the 2010 Winter Simulation Conference, IEEE, 2010, pp. 2751–2761.
- Tim Davie, *Fundamentals of hydrology*, Routledge, 2019.
- Herbert A David and Haikady N Nagaraja, *Order statistics*, John Wiley & Sons, 2004.
- Alvaro Rollon de Pinedo, *Statistical analysis of the results of numerical simulations of accidental situations in pressurized water reactors*, Ph.D. thesis, Université Grenoble Alpes [2020-....], 2021.
- Sébastien Da Veiga, Fabrice Gamboa, Bertrand looss, and Clémentine Prieur, Basics and trends in sensitivity analysis: Theory and practice in r, SIAM, 2021.

- P. W. Glynn, Importance sampling for monte carlo estimation of quantiles, Mathematical Methods in Stochastic Simulation and Experimental Design: Proceedings of the 2nd St. Petersburg Workshop on Simulation, Citeseer, 1996, pp. 180–185.
- C. Gauchy, J. Stenger, R. Sueur, and B. looss, *An information geometry approach to robustness analysis for the uncertainty quantification of computer codes*, Technometrics **64** (2022), no. 1, 80–91.
- Marouane II Idrissi, Nicolas Bousquet, Fabrice Gamboa, Bertrand Iooss, and Jean-Michel Loubes, *Quantile-constrained wasserstein projections for robust interpretability of numerical and machine learning models*, Electronic Journal of Statistics **18** (2024), no. 2, 2721–2770.

- B. B. Ketema, N. Bousquet, F. Costantino, F. Gamboa, B. looss, and R. Sueur, *Fisher-Rao distance between truncated distributions and robustness analysis in uncertainty quantification*, arXiv preprint arXiv:2407.21542 (2024).
- Paul Lemaître, Ekatarina Sergienko, Aurélie Arnaud, Nicolas Bousquet, Fabrice Gamboa, and Bertrand Iooss, *Density modification-based reliability sensitivity analysis*, Journal of Statistical Computation and Simulation **85** (2015), no. 6, 1200–1223.
- Jerome Stenger, *Optimal uncertainty quantification of a risk measurement from a computer code*, Ph.D. thesis, Université Paul Sabatier-Toulouse III, 2020.

Thank you for the attention !

Lemma

Under continuity of F, the desired probability can be rewritten as

$$\mathbb{P}(Y_{(i_{\xi})} \leq q_{\alpha} \leq Y_{(j_{\xi})}) = 1 - \mathbb{P}\left(\sum_{i=1}^{n} Z_{i,\xi}^{+} < 0\right) - \mathbb{P}\left(\sum_{i=1}^{n} Z_{i,\xi}^{-} > 0\right), \quad (1)$$

where $(Z^+_{i,\xi})_{1 \le i \le n}$ and $(Z^-_{i,\xi})_{1 \le i \le n}$ are iid random variables each defined as

 $Z_{i,\xi}^+ = L(Y_i)(\mathbf{1}_{Y_i \leq q_{\alpha}} - \alpha + \xi)$ and $Z_{i,\xi}^- = L(Y_i)(\mathbf{1}_{Y_i \leq q_{\alpha}} - \alpha - \xi).$

In addition, the variables $Z_{i,\xi}^{\pm}$ have mean $\pm \xi$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Engineers work with bounded domains \implies need to compute the Fisher-Rao distance on truncated parametric families i.e.

$$f_{ heta, ab}(x) = rac{f_{ heta}(x)}{\int_a^b f_{ heta}(y) dy} \mathbf{1}_{x \in [a,b]}$$

How to do that ?

- **1** Compute the Fisher information (either explicitly or numerically),
- 2 Numerically solve an ordinary differential equation with coefficients involving the Fisher information

We considered a few well-known families: truncated normal, truncated log-normal, truncated Gumbel, Beta, triangular,...

Preprint [KBC⁺24] submitted and under review (arXiv: 2407.21542)

Perturbations in the truncated normal family

Similarly for the truncated **log-normal** family (the Fisher information is the same as the truncated normal family)

Perturbations ($\delta=0.3$) of log $\mathcal{N}(0,1)$

Perturbations ($\delta=0.3$) of truncated log $\mathcal{N}(0,1)$

Figure: Perturbations of a log-normal density in the usual and truncated case

For the truncated **Gumbel** family

Perturbations ($\delta = 0.5$) of Gumb(0,1)Perturbations ($\delta = 0.5$) of truncated Gumb(0,1)Figure: Perturbations of a Gumbel density in the usual and truncated case