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Motivation #1: a flood model

The height H of a river is computed using a simplified flood model

H = (Q/30K )0.6500.3(Zm − Zv )
0.3

with uncertain inputs K ,Q,Zm,Zv having nominal distributions

K ∼ truncated normal
Q ∼ truncated Gumbel
Zm,Zv ∼ triangulars

Flooding does not occur 95% of the time if

q0.95(H) ≤ H∗

where H∗ is the altitude of the dyke Source: [Ste20]
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Motivation #2: a hydrological rainfall-runoff model

The runoff volume R is computed using a simplified SCS hydrological model [Dav19]

R = (P − 0.2S)2(P + 0.8S)−1

with uncertain inputs P,S having nominal distributions

P ∼ Gumbel
S ∼ truncated normal

Flooding does not occur 95% of the time if

q0.95(R) ≤ R∗

where R∗ is the maximum drainage capacity
of the urban area
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Motivation #3: a thermal hydraulic computer code (nuclear context)

The peak cladding temperature T after a LOCA accident is computed using
CATHARE code

T = G (X1, . . . ,Xd)

where X1, . . . ,Xd are uncertain physical inputs having nominal distributions

truncated normals
truncated log-normals
uniforms
log-uniforms

Safety is guarantied α · 100% of the time if

qα(T ) ≤ T∗

where T∗ is a safety threshold Figure: A single simulation of a transitory. Source: [dP21]
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Commonality of previous cases

In all three cases, we have a (computer) model G

X = (X1, . . . ,Xd)︸ ︷︷ ︸
uncertain input variables

G7−→ Y = G (X )︸ ︷︷ ︸
output decision variable

with nominal distribution P0 describing uncertainty on X and a safety criterion

qα(Y |X ∼ P0) ≤ τ∗ (SCα)

Two possible scenarios:

1 P0 perfectly models uncertainty on X =⇒ for safety demonstrations we only
need to show (SCα) for P0

2 P0 is itself uncertain =⇒ important to know if (SCα) is verified for all
distributions P “neighboring” the nominal P0 (think “P = P0 + error”) i.e.

qα(Y |X ∼ P) ≤ τ∗
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Sensitivity analysis vs. Robustness analysis

Sensitivity Analysis

Uncertainty on X is described by a fixed distribution P0, the map

X ∈ Rd G7−→ Y ∈ R (SA)

propagates uncertainty from X to Y , quantified using sensitivity indices (Sobol,
HSIC,...)

Robustness Analysis

Uncertainty on P0 itself [DVGIP21, Ste20] brings us to consider the operator

P ∈ M1(Rd)
G#7−→ G#P ∈ M1(R) (RA)

Only a quantile of G#P is of interest (or another QoI). Sensitivity of P 7−→ qα(G#P)
around P0 is quantified using robustness indices (for instance PLI, [LSA+15])
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PhD project objectives

Main objective: Given G , study the sensitivity of the map

P ∈ M1(Rd) 7−→ qα(Y |X ∼ P)

around P0, this requires to develop:

1 a perturbation method for changing P0 to P (How? With what? In what space?)
2 an estimation method for the quantile

qα(Y |X ∼ P)

for all distributions P “around” P0, with a reasonable evaluation of G
3 a confidence interval În,β for the latter i.e.

P
(
qα(Y |X ∼ P) ∈ În,β

)
≈ β

4 an optimization algorithm for computing robustness indices
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DISTRIBUTIONAL PERTURBATION METHOD
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Assumptions and first remarks

Assumption #1: P0 assumed univariate for illustration

It is not computationally feasible to verify the safety criterion (SCα)

qα(Y |X ∼ P) ≤ τ∗

for all P in M1(R)

Assumption #2: P0 is in a parametric family P and P are restricted to it i.e.

P ∈ P = {Pθ}θ∈Θ and P0 = Pθ0

This allows to restrict the following map to P ⊂ M1(R)

Pθ 7−→ qα(Y |X ∼ Pθ)
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Which distance for defining perturbations ?

Definition (δ-perturbations)

Given a distance d on P, a δ-perturbation of Pθ0 is any other Pθ in P such that

d(Pθ0 ,Pθ) = δ

In other words, all distributions Pθ in the sphere S(Pθ0 , δ) are equivalent perturbations
of Pθ0

Most distances (or divergences) on the family P = {Pθ}θ∈Θ are

extrinsic to P (Wasserstein [IIBG+24], total variation, f -divergences [LSA+15], MMD,...)

or parametrization-dependent (Lp distances on Θ, Mahalanobis distance,...)

A good candidate for d is the Fisher-Rao distance [GSSI22] which is both intrinsic to
P and invariant under reparametrization
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Definition of the Fisher-Rao distance

The Fisher-Rao distance has both a statistical and geometric origin

Statistics: CLT for the maximum likelihood estimator θ̂n implies

n t(θ̂n − θ∗)Iθ∗(θ̂n − θ∗)
dist.−→ χ2

where Iθ∗ is the Fisher information for P defined as the Hessian of the relative
entropy of Pθ from Pθ∗ i.e.

Iθ∗ =
∂2

∂θ2

[
D(Pθ|Pθ∗)

]
θ=θ∗

Geometry: The function θ 7→ Iθ can be seen as a local scalar product (Riemannian
metric) on P allowing to define a (information) geometry. In particular, the notion of
distance on P as the “ length of the shortest path”

d(Pθ0 ,Pθ1) = inf

{∫ 1

0

√
t θ̇s · Iθs · θ̇s ds

∣∣∣ (θs)s curve linking θ0 to θ1

}
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Illustration of this perturbation method

Spheres in the normal and Gumbel family represented in the parameter space

Normal family: sphere centered at N (0, 1)
with radius δ = 0.5 (µ = mean, σ = std)

Gumbel family: sphere centered at Gumb(0, 1)
with radius δ = 0.5 (m = location, s = scale)

Figure: Parameters on the red sphere correspond to the perturbed distributions Pθ of the
nominal Pθ0
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Illustration of this perturbation method

Illustration of the δ-perturbed densities in the normal and Gumbel family for δ = 0.1

Normal family: a few δ−perturbations of
N (0, 1) for δ = 0.1

Gumbel family: a few δ-perturbations of
Gumb(0, 1) for δ = 0.1

Figure: Densities in red represent perturbed distributions Pθ of the nominal Pθ0
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Illustration of this perturbation method

Illustration of the δ-perturbed densities in the normal and Gumbel family for δ = 0.3

Normal family: a few δ−perturbations of
N (0, 1) for δ = 0.3

Gumbel family: a few δ-perturbations of
Gumb(0, 1) for δ = 0.3

Figure: Densities in red represent perturbed distributions Pθ of the nominal Pθ0
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Illustration of this perturbation method

Illustration of the δ-perturbed densities in the normal and Gumbel family for δ = 0.5

Normal family: a few δ−perturbations of
N (0, 1) for δ = 0.5

Gumbel family: a few δ-perturbations of
Gumb(0, 1) for δ = 0.5

Figure: Densities in red represent perturbed distributions Pθ of the nominal Pθ0
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ESTIMATION AND CONFIDENCE INTERVALS FOR QUANTILES
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Direct vs. Importance sampling estimation

Reminder: Study the sensitivity of the map

P 7−→ qα(Y |X ∼ P)

for perturbed distributions P around P0

Direct method Importance sampling

1 sample X = {X 1, . . . ,X n} from P
2 evaluate G on X
3 estimate qα(Y |X ∼ P) with the

empirical quantile

1 sample X0 = {X 1, . . . ,X n} from P0

2 evaluate G on X0

3 estimate qα(Y |X ∼ P) with an
importance sampling technique

Not feasible for all P if G is expensive P0 is used as an instrumental measure in
an importance sampling scheme

14 / 24



Quantile estimation

Henceforth, we assume P ≪ P0 and denote the likelihood ratio

L(x) :=
dP
dP0

(x)

of P against P0. The quantile qα(Y |X ∼ P) is estimated as

q̂α(P) = inf{t ∈ R | F̂ (t) ≥ α}

where F̂ is the self-normalized estimator of the distribution function F of Y |X ∼ P

F̂ (t) =
1∑n

i=1 L(X i )

n∑
i=1

L(X i )1G(X i )≤t

which is built on the fixed sample X0 = {X 1, ...,X n} from P0
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Central limit theorem and confidence intervals

Theorem (CLT for IS quantile estimator, [Gly96])
If F is differentiable with positive derivative at qα(Y |X ∼ P), then

√
n

(
q̂α(P)− qα(Y |X ∼ P)

)
dist.−→ N (0, σ2)

where

σ2 =
EP0 [L(X )2(1G(X )≤qα(Y |X∼P) − α)2]

F ′
(
qα(Y |X ∼ P)

)
Denoting În,ε = q̂α(P)± ε/

√
n, the CLT implies an asymptotic confidence interval

lim
n→∞

P
(
qα(Y |X ∼ P) ∈ În,ε

)
= (2πσ2)−1/2

∫ ε

−ε
e−

x2

2σ2 dx

A consistent estimator of σ2 is given in [CN10]
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A generalization to Wilks approach

If Y1, . . . ,Yn ∼ G#P0, then qα(Y |X ∼ P0) ≈ Y([nα]) and

P
(
qα(Y |X ∼ P0) ∈

[
Y(i),Y(j)

])
= Iα(i , n − i + 1)− Iα(j , n − j + 1)

where Y(1) ≤ . . . ≤ Y(n) and Iα(p, q) is the incomplete Beta function [DN04]

Theorem (Non-asymptotic CI for perturbed quantiles)

For n fixed and Y1, . . . ,Yn ∼ G#P0 we have

P
(
qα(Y |X ∼ P) ∈

[
Y(iε),Y(jε)

])
≥ βn,ε

where
βn,ε depends on assumptions on the likelihood L
Y(iε) = q̂α−ε(P) and Y(jε) = q̂α+ε(P)
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Consequence of Hoeffding’s concentration inequality

For instance, a bounded likelihood gives the following

Proposition

If a ≤ L ≤ b we have

P
(
qα(Y |X ∼ P) ∈ În,ε

)
≥ 1 − exp

(
− 2nε2

(b − a)2(α− ε)2

)
− exp

(
− 2nε2

(b − a)2(1 − α− ε)2

)
where În,ε =

[
Y(iε),Y(jε)

]
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Consequence of Bennett’s concentration inequality

Here a control on EP0 [L2] is assumed. We denote h(u) = (1 + u) log(1 + u)− u

Proposition

If a ≤ L ≤ b and EP0 [L2] ≤ ν we have

P
(
qα(Y |X ∼ P) ∈ În,ε

)
≥ 1 − exp

(
−nν+

a2
+

h

(
a+ε

ν+

))
− exp

(
−nν−

b2
−

h

(
b−ε

ν−

))
where a+ and b− are given by a+ = −a(−α+ ε) and b− = b(1 − α− ε), and ν+ and
ν− are defined as

ν± = min{ν, bα}(1 − α± ε) + ν
(
α2 + ε2 ∓ αε

)
and În,ε =

[
Y(iε),Y(jε)

]
19 / 24



Sub-Gaussian and sub-Gamma concentration inequalities

Here L is assumed light-tailed: sub-Gaussian or sub-Gamma. Denote h1(u) = u2/2
and h2(u) = 1 + u −

√
1 + 2u

Proposition

If L is sub-Gaussian (k = 1) with constant ν or sub-Gamma (k = 2) with constants
ν, c > 0 then

P
(
qα(Y |X ∼ P) ∈ În,ε

)
≥ 1 − exp

(
−nν+

c2
+

hk

(
c+ε

ν+

))
− exp

(
−nν−

c2
−

hk

(
c−ε

ν−

))
where ν+, ν− are given by

ν+ = (α− ε)2ν and ν− = (1 − α− ε)2ν,

c+, c− are given by c+ = (α− ε)c , c− = (1 − α− ε)c and În,ε =
[
Y(iε),Y(jε)

]
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Tips for practionners

Hoeffding Bennett sub-Gaussian sub-Gamma

a ≤ L ≤ b
a ≤ L ≤ b and
EP0 [L2] ≤ ν

EP0 [e
λL] ≤ eλ

2ν/2 EP0 [e
λL] ≤ eλ

2ν/2(1−cλ)

Table: Summary of assumptions for each inequality

1 Hoeffding =⇒ sub-Gaussian with ν = (b − a)2/4
2 Bennett is better than Hoeffding if EP0 [L2] = ν ≪ b − a

3 sub-Gaussian with ν always better than sub-Gamma with ν (and any c)
4 L is heavy-tailed (i.e. EP0 [Lm] = ∞) =⇒ no exponential bounds can be obtained
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Back to the flood model

The height H of a river is computed using the previously defined model. We study
robustness of

fQ 7−→ qα(H|Q ∼ fQ)

w.r.t. perturbations of fQ to fQ,1 and fQ,2

Using an iid sample from
P0 = fK ⊗ fQ ⊗ fZm ⊗ fZv , we estimate and
build CIs for

qα(H|Q ∼ fQ,i )

fQ , fQ,1, fQ,2 are truncated Gumbel
distributions
K ∼ fK truncated normal
Zm,Zv ∼ fZm , fZv triangulars
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Back to the flood model

Determining the constants:
a ≤ L = fQ,1/fQ ≤ b where a ≈ 0.004 and b ≈ 2.69
ν = EP0 [L2] ≈ 1.49

estimation Hoeffding Bennett

α = 0.5 2.86m [2.83, 2.92] [2.80, 2.95]

α = 0.75 3.42m [3.33, 3.50] [3.30, 3.54]

α = 0.95 4.29m [3.97, 5.31] [3.95, 5.45]

Table: Estimation and 95% non-asymptotic confidence intervals for qα(H|Q ∼ fQ,1) with a
sample of size n=5000
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Back to the flood model

Determining the constants:
a ≤ L = fQ,2/fQ ≤ b where a ≈ 0.40 and b ≈ 5.93
ν = EP0 [L2] ≈ 1.38

estimation Hoeffding Bennett

α = 0.5 1.99m [1.88, 2.10] [1.90, 2.08]

α = 0.75 2.56m [2.39, 2.77] [2.45, 2.68]

α = 0.95 3.54m [2.98,∞) [3.18, 4.52]

Table: Estimation and 95% non-asymptotic confidence intervals for qα(H|Q ∼ fQ,2) with a
sample of size n=5000
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Back to the flood model

Figure: 50 estimations and 95% non-asymptotic CIs for q0.95(H|Q ∼ fQ,2) with a sample of
size n=5000 using Bennett’s inequality
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Industrial safety application

We look at the peak cladding temperature T after a LOCA computed using
CATHARE T = G (X1, . . . ,X56). We study robustness of

fX38 7−→ qα(T |X38 ∼ fX38)

w.r.t. perturbations of fX38 to fX38,δ

Using an iid sample from P0 = fX1 ⊗ . . .⊗ fX56 ,
we estimate and build CIs for

qα(T |X38 ∼ fX38,δ)

fX38 and fX38,δ are truncated normals
the other fXi

are either truncated normal,
truncated log-normal, uniform or
log-uniform
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Industrial safety application

Determining the constants:
a ≤ L = fX38,δ/fX38 ≤ b where a ≈ 0.49 and b ≈ 12.2
ν = EP0 [L2] ≈ 1.76

estimation Hoeffding Bennett

α = 0.5 299.5oC [292.4, 307.6] [296.1, 303.1]

α = 0.75 328.5oC [310.3, 355.6] [320.0, 337.8]

α = 0.95 382.4oC [336.0,∞) [362.1, 661.5]

Table: Estimation and 95% non-asymptotic confidence intervals for qα(T |X38 ∼ fX38,δ) with a
sample of size n=5000

23 / 24



Industrial safety application

Determining the constants:
a ≤ L = fX38,δ/fX38 ≤ b where a ≈ 0.49 and b ≈ 12.2
ν = EP0 [L2] ≈ 1.76

estimation
(n = 104)

Hoeffding
(n = 5000)

Hoeffding
(n = 104)

Bennett
(n = 5000)

Bennett
(n = 104)

α = 0.5 300.1oC [292.4, 307.6] [294.7, 305.9] [296.0, 303.1] [297.4, 302.6]

α = 0.75 329.9oC [310.3, 355.6] [314.5, 348.8] [319.9, 337.8] [323.3, 336.0]

α = 0.95 382.3oC [336.0,∞) [345.7,∞) [362.0, 661.5] [368.0, 414.9]

Table: Estimation and 95% non-asymptotic confidence intervals for qα(T |X38 ∼ fX38,δ) with a
sample of size n=5000 and n=10000
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Final remarks

Conclusion Perspectives

Presented the mathematical
framework for robustness
analysis methods
Illustrated the Fisher-Rao
perturbation method on
parametric families
Built estimators and
non-asymptotic CIs for
quantiles qα(Y |X ∼ P)
generalizing Wilks method
(preprint in preparation)

Optimization algorithms for
computing robustness indices
Advising Pierre Schatz
(internship) on the Fisher-Rao
perturbation method for
dependent inputs
Maximum level δmax for
Fisher-Rao perturbation beyond
which RA is not necessary
...
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Thank you for the attention !
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Fundamental lemma

Lemma

Under continuity of F , the desired probability can be rewritten as

P(Y(iξ) ≤ qα ≤ Y(jξ)) = 1 − P

(
n∑

i=1

Z+
i ,ξ < 0

)
− P

(
n∑

i=1

Z−
i ,ξ > 0

)
, (1)

where (Z+
i ,ξ)1≤i≤n and (Z−

i ,ξ)1≤i≤n are iid random variables each defined as

Z+
i ,ξ = L(Yi )(1Yi≤qα − α+ ξ) and Z−

i ,ξ = L(Yi )(1Yi≤qα − α− ξ).

In addition, the variables Z±
i ,ξ have mean ±ξ.
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Contribution: application to truncated distributions

Engineers work with bounded domains =⇒ need to compute the Fisher-Rao distance
on truncated parametric families i.e.

fθ,ab(x) =
fθ(x)∫ b

a fθ(y)dy
1x∈[a,b]

How to do that ?

1 Compute the Fisher information (either explicitly or numerically),
2 Numerically solve an ordinary differential equation with coefficients involving

the Fisher information

We considered a few well-known families: truncated normal, truncated log-normal,
truncated Gumbel, Beta, triangular,...

Preprint [KBC+24] submitted and under review (arXiv: 2407.21542)
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Contribution: application to truncated distributions

Perturbations in the truncated normal family

Sphere centered at (0, 1) for δ = 0.4
Perturbations of a truncated N (0, 1) where δ = 0.4

Figure: Truncated normal family on [−2, 2]
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Contribution: application to truncated distributions

Similarly for the truncated log-normal family (the Fisher information is the same as the
truncated normal family)

Perturbations (δ = 0.3) of logN (0, 1) Perturbations (δ = 0.3) of truncated logN (0, 1)

Figure: Perturbations of a log-normal density in the usual and truncated case
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Contribution: application to truncated distributions

For the truncated Gumbel family

Perturbations (δ = 0.5) of Gumb(0, 1) Perturbations (δ = 0.5) of truncated Gumb(0, 1)

Figure: Perturbations of a Gumbel density in the usual and truncated case
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