Learning signals defined on graphs with optimal transport and Gaussian process regression

Raphaël Carpintero Perez

Sébastien Da Veiga Josselin Garnier Brian Staber

22/04/2025 SAFRAN

Turbine blades

Costly numerical simulation (~4 hours)

3

b boundary/external conditions

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

7

I) Scalar outputs

1- Gaussian process regression
 2- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Gaussian process regression

The kernel jungle (graph edition)

Picture generated by Chatgpt

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

I) Scalar outputs

Gaussian process regression
 SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Sliced Wasserstein Weisfeiler-Lehman graph kernels

1

[CP, Da Veiga, Garnier, Staber, 2024]

Embeddings of the graphs

2

Build a positive definite kernel between empirical measures

12

Weisfeiler-Lehman embeddings

Example from [Kriege et al., 2020]

13

WL relabeling (categorical case)

$$l^{(i+1)}(v) = Hash(l^{i}(v), \{l^{i}(u), u \in \mathcal{N}(v)\})$$
$$X_{G}^{(i)} = \begin{bmatrix} l^{(i)}(v), v \in V_{G} \end{bmatrix} \qquad X_{G} = Concatenate(X_{G}^{(0)}, \cdots, X_{G}^{(H)})$$

Continuous Weisfeiler-Lehman embeddings

[Togninalli et al., 2019]

WL relabeling (continuous case)

$$\begin{aligned} a^{(i+1)}(v) &= \frac{1}{2} \left(a^{(i)}(v) + \frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} w(v, u) \ a^{(i)}(u) \right) \\ X_G^{(i)} &= \left[a^{(i)}(v), v \in V_G \right] \qquad X_G = Concatenate(X_G^{(0)}, \cdots, X_G^{(H)}) \end{aligned}$$

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Sliced Wasserstein Weisfeiler-Lehman graph kernels

1

[CP, Da Veiga, Garnier, Staber, 2024]

G = G = G = G

15

Embeddings of

the graphs

2

Build a positive definite kernel between empirical measures

Continuous WL embeddings

Wasserstein distance

$$\mathcal{W}^{2}(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{s} \times \mathbb{R}^{s}} ||x-y||^{2} d\gamma(x,y),$$

Where:

16

- *s* ∈ [1, +∞),

- $\mathcal{P}_2(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order 2,

$$-\Pi(\mu,\nu) = \{\pi \in \mathcal{P}_2(\mathbb{R}^s \times \mathbb{R}^s): (Proj_1)_{\#\pi} = \mu, (Proj_2)_{\#\pi} = \nu\}$$

$\stackrel{\scriptstyle \scriptstyle \scriptstyle \bullet}{} \mathcal{O}(n^3 {\rm lo} g(n))$

× Substitution kernels are not positive definite in dimension $s \ge 2$

Sliced Wasserstein distance

Sliced Wasserstein distance

[Bonneel et al. 2015]

$$\mathcal{SW}^{2}(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}^{2}(\theta_{\#}^{*}\mu,\theta_{\#\nu}^{*}) \mathrm{d}\sigma(\theta)$$

Where:

17

- \mathbb{S}^{s-1} : (s-1)-dimensional unit sphere,
- σ : uniform distribution on \mathbb{S}^{s-1}
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_2(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

- Complexity: scales as $n \log(n)$
- Positive definite substitution kernels

Sliced Wasserstein distance

 \checkmark Complexity: scales as $n \log(n)$

18

Positive definite substitution kernels

Sliced Wasserstein Weisfeiler-Lehman graph kernels

19

I) Scalar outputs

Gaussian process regression
 SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Learning output fields/signals

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a train dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1,\dots,N}$

Learning output fields/signals

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a train dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1,\dots,N}$

- Inputs can have different sizes, so do the outputs
- No natural ordering of the output scalar elements
- The number of output elements can be very large

22

I) Scalar outputs

Gaussian process regression
 SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- × No uncertainties
- ✗ Training time

Graph Neural Networks ✓ Signal prediction [Pfaff, 2020]

- ✗ No uncertainties
- ✗ Training time

Multi/Functional Output GPs

- No ordering of the output elements
- X Varying domains [Goovaerts, 1997]

Graph Neural Networks ✓ Signal prediction [Pfaff, 2020]

- × No uncertainties
- ✗ Training time

26

Multi/Functional Output GPs

- × No ordering of the output elements
- ★ Varying domains [Goovaerts, 1997]

Dimension reduction

✗ No ordering of the output elements [Kontolati, 2022]

Graph Neural Networks ✓ Signal prediction [Pfaff, 2020]

- ✗ No uncertainties
- ✗ Training time

Multi/Functional Output GPs

- × No ordering of the output elements
- Xarying domains [Goovaerts, 1997]

Dimension reduction

✗ No ordering of the output elements [Kontolati, 2022]

✓ eigenvalue, ↘ smoothness
Graph signal processing [Ortega, 2018]

Incomparable eigendecompositions

Graph Neural Networks ✓ Signal prediction [Pfaff, 2020]

- ✗ No uncertainties
- ✗ Training time

Multi/Functional Output GPs

- × No ordering of the output elements
- ★ Varying domains [Goovaerts, 1997]

Dimension reduction

No ordering of the output elements [Kontolati, 2022]

✓ eigenvalue, ↘ smoothness
Graph signal processing [Ortega, 2018]

Incomparable eigendecompositions

Specific to meshes + same topology

I) Scalar outputs

Gaussian process regression
 SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Express signals/fields in the same space?

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

30

Wasserstein distance

$$\mathcal{W}^{2}(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{s} \times \mathbb{R}^{s}} ||x-y||^{2} d\gamma(x,y),$$

Where:

31

- *s* ∈ [1, +∞),

- $\mathcal{P}_2(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order 2,

$$-\Pi(\mu,\nu) = \{\pi \in \mathcal{P}_2(\mathbb{R}^s \times \mathbb{R}^s): (Proj_1)_{\#\pi} = \mu, (Proj_2)_{\#\pi} = \nu\}$$

33

Transferring fields with transport plans

Part 1: getting transport plans (input space) $\mu_{ref}: \text{ reference measure of size } n_{ref}$ $\mu_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \delta_{[\phi_{WL}(G^{(i)})]_j} : \text{WL embeddings of input graph } i$ $P_{\lambda}^{(i)} = \underset{P \in U(n_i, n_{ref})}{\operatorname{argmin}} L_{\lambda}(\mu_i, \mu_{ref}, P) \in \mathbb{R}^{n_i \times n_{ref}}$

Transferring fields with transport plans

$$\mu_{ref}: \text{ reference measure of size } n_{ref}$$

$$\mu_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \delta_{[\phi_{WL}(G^{(i)})]_j} : \text{WL embeddings of input graph } i$$

$$P_{\lambda}^{(i)} = \underset{P \in U(n_i, n_{ref})}{\operatorname{argmin}} L_{\lambda}(\mu_i, \mu_{ref}, P) \in \mathbb{R}^{n_i \times n_{ref}}$$

Part 1: gotting transport plane (input space)

Part 2: transferring **output** signals

$$T^{(i)} = \left(n_{ref} P_{\lambda}^{(i)}\right)^{\mathsf{T}} y^{(i)} \in \mathbb{R}^{n_{ref}}$$
 Transferred field
$$\tilde{y}^{(i)} = \left(n_i P_{\lambda}^{(i)}\right) T^{(i)} \in \mathbb{R}^{n_i}$$
 Reconstructed field

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

How to choose the regularization parameter ?

Transferred

Choose $\lambda > 0$ that minimizes the error (RRMSE) between

- the train output fields and

36

- the train reconstructed fields

...

How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures

How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures

Discretizations of manifolds

How to choose a reference measure ?

2) Subsample from a train measure:

3) Uniform grid on a reference shape:

39

Ī	•	•	
i.	•	•	•!
	•	•	

Express signals/fields in the same space?

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Dimension reduction (in practice)

 $x^{(N)}$

TOS-GP: Transported Output Signal Gaussian Processes

TOS-GP: Transported Output Signal Gaussian Processes

[CP, Da Veiga, Garnier, Staber, 2025]

TOS-GP: Transported Output Signal Gaussian Processes

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

 μ_{ref}

XX

PCA component Q

Transferred fields Outputs $y^{(N)}$ • • $y^{(1)}$ $T^{(1)}$ $\circ T^{(N)}$

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

X

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TOS-GP: Transported Output Signal Gaussian Processes

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

I) Scalar outputs

Gaussian process regression
 SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Datasets

Dataset name	Train/Test	Nodes	Output fields	
Rotor37	1000 / 200	~30000	Temperature (T)	
Tensile2d	500 / 200	~9500	H displacement (U)	
Multiscale	764 / 376	~4600	H displacement (U)	

TOS-GP: regression scores

 $\mathrm{Tensile2d}(U)\,,\lambda=1e^{-3}$

Tensile2d(U), reference = Large

- The error decreases when the size of the reference increases

- It remains close to a constant beyond 1000 points
- The choice of the reference type has little importance for this problem
- The choice of the **regularization parameter** is **critical**

TOS-GP: uncertainty propagation (field σ_{12})

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

TOS-GP: predictions and uncertainties

2.5e-03

0

-3.3e-03

1.6e+02

-1.6e+02

0

Ground truth

2.5e-03

0

-3.3e-03

1.6e+02

-1.6e+02

0

1.5e-01

2.9e-05

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Prediction

TOS-GP: regression scores

	Method/Dataset	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$
RRMSE	TOS-GP GCNN	9.6e-3 (2e-5) 3.9e-3 (1e-4)	2.2e-3 (8e-6) 4.5e-2 (1e-2)	5.6e-3 (3e-6) 4.5e-2 (4e-3)
(10 exp)	MGN MMGP	1.4e-2 (2e-3) 8.2e-4 (1e-5)	$\begin{array}{c} 1.5e-2 \ (1e-3) \\ 3.4e-3 \ (4e-5) \end{array}$	7.5e-3 (4e-4) 2.4e-3 (2e-5)

$$RRMSE^{2}\left(\left\{y^{(i)}\right\}_{i=1,\cdots,N_{*}},\left\{\hat{y}^{(i)}\right\}_{i=1,\cdots,N_{*}}\right) = \frac{1}{N_{*}}\sum_{i=1}^{N_{*}}RRMSE_{i}^{2}\left(y^{(i)},\hat{y}^{(i)}\right)$$

$$RRMSE_{i}^{2}(y^{(i)}, \hat{y}^{(i)}) = \frac{\left\|y^{(i)} - \hat{y}^{(i)}\right\|_{2}^{2}}{n_{*i} \left\|y^{(i)}\right\|_{\infty}^{2}}$$

56

Dimension reduction PC2 PCA PCA Auto-encoder Auto-encoder Auto-encoder with convolutional

and 2D discrete Fourier layers [Li et al. 2020]

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

U true

Ground truth

(MGN)

(TOS-GP)

Conclusion

Inputs = Graphs, Outputs = **Scalars**

- SWWL graph kernel
 - ✓ Positive definite
 - ✓ Can consider very large graphs

Inputs = Graphs, Outputs = **Signals**

- Classical techniques impossible to use directly MOGP, OVGP, GSP, dimension reduction, ...
- TOS-GP: Transported Output Signal GP
 Optimal transport + Dimension reduction
 - ✓ Flexible (change kernel/dimension reduction)
 - ✓ No assumption on the data (mesh/topology)
 - ✓ Few hyperparameters: λ , ref. measure, WL iter.

Future work
 Consider more discontinuous signals
 Optimal transport variants

This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

References

Graph kernels, Gaussian processes

- Nikolentzos, G., Siglidis, G., & Vazirgiannis, M. (2021). Graph kernels: A survey.
- Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels.
- Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., & Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning.
- Hein, M., & Bousquet, O. (2005). Hilbertian metrics and positive definite kernels on probability measures.
- Kriege, N. M., Fey, M., Fisseler, D., Mutzel, P., & Weichert, F. (2018, August). Recognizing cuneiform signs using graph based methods.

Optimal transport

- Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With applications to data science.
- Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., & Borgwardt, K. (2019). Wasserstein weisfeilerlehman graph kernels.
- Meunier, D., Pontil, M., & Ciliberto, C. (2022). Distribution Regression with Sliced Wasserstein Kernels.
- Bonneel, N., Rabin, J., Peyr'e, G., and Pfister, H. (2015). Sliced and radon Wasserstein barycenters of measures

References

64

Multi-output approaches

- Goovaerts, P. (1997). Geostatistics for natural resources evaluation.
- Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy, A., & Audiffren, J. (2016). Operator-valued kernels for learning from functional response data.
- Kadri, H., Ghavamzadeh, M., & Preux, P. (2013, February). A generalized kernel approach to structured output learning.
- Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A., & Schölkopf, B. (2003). Kernel dependency estimation.
- Brouard, C., Szafranski, M., & d'Alché-Buc, F. (2016). Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels.
- Kontolati, K., Loukrezis, D., Giovanis, D. G., Vandanapu, L., & Shields, M. D. (2022). A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems.
- Casenave, F., Staber, B., & Roynard, X. (2024). Mmgp: a mesh morphing gaussian process-based machine learning method for regression of physical problems under nonparametrized geometrical variability
- Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.

Gaussian process regression

Noisy observations: $\mathbf{y} = (y_i)_{i=1}^N$ with $y_i = f(G_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2), f: \mathcal{X} \to \mathbb{R}$

Gaussian prior over functions:

 $f \sim \mathcal{GP}(0, k)$ where $k: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ is a symmetric **positive definite kernel**

- $\mathcal{X} = \mathcal{G}$ is a set of graphs.
- How to choose k?

Test locations: $G^* = (G_i^*)_{i=1}^{N^*}$ Predictions? $f_* = (f(G_i^*))_{i=1}^{N^*}$?

K, *K*_{**}, *K*_{*} : train, test, train/test Gram matrices

$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \boldsymbol{K} + \sigma^2 \boldsymbol{I} & \boldsymbol{K}_*^T \\ \boldsymbol{K}_* & \boldsymbol{K}_{**} \end{bmatrix} \right)$$

Posterior distribution:

$$f_* \mid G, y, G^* \sim \mathcal{N}(\overline{m}, \overline{\Sigma})$$

predictive mean $\overline{m} = K_* (K + \sigma^2 I)^{-1} y$
uncertainties $\overline{\Sigma} = K_{**} - K_* (K + \sigma^2 I)^{-1} K_*^T$

SWWL kernel: experiments

(a) Cuneiform tablet

SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

MMD subsampling procedure

Maximum mean discrepancy:

 $MMD_k(\mu,\nu) = \mathbb{E}_{x \sim \mu, x' \sim \mu}[k(x,x')] + \mathbb{E}_{y \sim \nu, y' \sim \nu}[k(y,y')] - 2\mathbb{E}_{x \sim \mu, y \sim \nu}[k(x,y)]$

<u>Input:</u> μ a given measure in the train set. <u>Output:</u> ν the subsampled measure.

 $\nu = \emptyset$

67

At each iteration, choose the point x in the support of μ that minimizes the MMD between μ and $\nu + \delta_x$, and update ν .

POWERED BY TRUST

