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Objectives

Turbine blades
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Objectives

Surrogate model

Costly numerical simulation (~4 hours) 

Field Uncertainties

Turbine blades
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Step 1: Generate a design of experiments

Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

Step 2: Create the meshes

Step 3: Finite-element solver

⋯

⋯
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Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

Meshes

Fields
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Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

Step 3: Finite-element solver

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

∈ 𝒳
Meshes

Graphs

Fields

Signals
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Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

ℝ ℝ ℝ

∈ ∈ ∈

∈ 𝒳
Meshes

Graphs

Scalars



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Gaussian process regression

𝒢𝒢

ℝ ℝ

𝑓 ~ 𝒢𝒫 𝜇, 𝑘 𝑓 | 𝒟 ~ 𝒢𝒫 𝑚, ෨Σ𝑘 ∶ 𝒳 × 𝒳 → ℝ ?
Positive definite kernel? 
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The kernel jungle (graph edition)

FGW

SWWL

Picture generated 

by Chatgpt



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]
Build a positive 

definite kernel 

between empirical 

measures

Embeddings of 

the graphs
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Weisfeiler-Lehman embeddings

Example from [Kriege et al., 2020]

𝐵

𝐴

𝐵

𝐴
𝐴

▪ WL relabeling (categorical case)

𝐷

𝐶

𝐸

𝐶
𝐶

𝐶
𝐶

𝐶

𝐷 𝐸

𝐻

𝐹

𝐼

𝐺
𝐺

𝐹
𝐺

𝐺

𝐻 𝐼

𝑙 𝑖+1 𝑣 = 𝐻𝑎𝑠ℎ 𝑙𝑖 𝑣 , 𝑙𝑖 𝑢  , 𝑢 ∈ 𝒩 𝑣

𝑋𝐺
(𝑖)

= 𝑙 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺  𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
(0)

, ⋯ , 𝑋𝐺
(𝐻)

) 
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Continuous Weisfeiler-Lehman embeddings

𝑎 𝑖+1 𝑣 =
1

2
𝑎 𝑖 𝑣 +

1

deg 𝑣


𝑢∈𝒩 𝑣

𝑤 𝑣, 𝑢  𝑎 𝑖 𝑢

𝑋𝐺
(𝑖)

= 𝑎 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺  𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
0

, ⋯ , 𝑋𝐺
𝐻

) 

[Togninalli et al., 2019]

▪ WL relabeling (continuous case)
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]

Continuous WL 

embeddings

Build a positive 

definite kernel 

between empirical 

measures

Embeddings of 

the graphs
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Wasserstein distance

Where: 

- 𝑠 ∈ 1, +∞ , 

- 𝒫2 ℝ𝑠 : probability measures on ℝ𝑠 with finite moments of 
order 2,

- Π 𝜇, 𝜈 = 𝜋 ∈ 𝒫2 ℝ𝑠 × ℝ𝑠 :  𝑃𝑟𝑜𝑗1 #𝜋 = 𝜇, 𝑃𝑟𝑜𝑗2 #𝜋 = 𝜈

𝒲2 𝜇, 𝜈 =  inf
𝛾∈Π 𝜇,𝜈

න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 2𝑑𝛾 𝑥, 𝑦 , 

Wasserstein distance

𝜇

𝜈

 𝒪(𝒏𝟑𝐥𝐨𝒈(𝒏))

    Substitution kernels are not positive definite in dimension s ≥ 2
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Sliced Wasserstein distance

Sliced Wasserstein distance

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

𝒮𝒲2 𝜇, 𝜈 = න

𝕊s−1 

𝒲2 𝜃#
∗𝜇, 𝜃#𝜈

∗ d𝜎(𝜃)

Where: 

- 𝕊𝑠−1 :  (𝑠 − 1)-dimensional unit sphere, 

- 𝜎 : uniform distribution on 𝕊𝑠−1 

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫2(ℝ𝑠) by 𝜃∗ ℝ𝑠 → ℝ

𝑥 ↦ 𝜃, 𝑥
 

[Bonneel et al. 2015]
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Sliced Wasserstein distance

Sliced Wasserstein distance

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

𝒮𝒲2 𝜇, 𝜈 = න

𝕊s−1 

𝒲2 𝜃#
∗𝜇, 𝜃#𝜈

∗ d𝜎(𝜃)

Where: 

- 𝕊𝑠−1 :  (𝑠 − 1)-dimensional unit sphere, 

- 𝜎 : uniform distribution on 𝕊𝑠−1 

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫2(ℝ𝑠) by 𝜃∗ ℝ𝑠 → ℝ

𝑥 ↦ 𝜃, 𝑥
 

Quantile 
function

= න

0 

1

𝐹−1 𝜇 − 𝐹−1 𝜈 2 d𝑡

[Bonneel et al. 2015]
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]

Continuous WL 

embeddings

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

Build a positive 

definite kernel 

between empirical 

measures

Sliced Wasserstein

Embeddings of 

the graphs



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Learning output fields/signals

𝒴 =  ራ

𝑥= 𝑉,𝐸,𝑤,𝐹 ∈𝒳

{𝑦: 𝑉 → ℝ}

Learn 𝑓 ∶ → from a train dataset  𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1,⋯,𝑁

𝒳  𝒴
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Learning output fields/signals

 Inputs can have different sizes, 
so do the outputs

 No natural ordering of the 
output scalar elements

 The number of output 
elements can be very large

𝒴 =  ራ

𝑥= 𝑉,𝐸,𝑤,𝐹 ∈𝒳

{𝑦: 𝑉 → ℝ}

Learn 𝑓 ∶ → from a train dataset  𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1,⋯,𝑁

𝒳  𝒴



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Related approaches

[Pfaff, 2020]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time
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Related approaches

Multi/Functional Output GPs

[Pfaff, 2020]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains [Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

[Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

Graph signal processing [Ortega, 2018]

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

 Incomparable eigendecompositions 

[Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

Graph signal processing [Ortega, 2018]

Mesh Morphing Gaussian Processes

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

[Casenave, 2024]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

 Incomparable eigendecompositions 

[Goovaerts, 1997]

✓ Prediction + uncertainties

 Specific to meshes + same topology

Morphing Finite element 

interpolation



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Express signals/fields in the same space?

Inputs Outputs

Same size + order

Transformed Outputs

1

Transform

=

=

=
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Wasserstein distance

Where: 

- 𝑠 ∈ 1, +∞ , 

- 𝒫2 ℝ𝑠 : probability measures on ℝ𝑠 with finite moments of 
order 2,

- Π 𝜇, 𝜈 = 𝜋 ∈ 𝒫2 ℝ𝑠 × ℝ𝑠 :  𝑃𝑟𝑜𝑗1 #𝜋 = 𝜇, 𝑃𝑟𝑜𝑗2 #𝜋 = 𝜈

𝒲2 𝜇, 𝜈 =  inf
𝛾∈Π 𝜇,𝜈

න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 2𝑑𝛾 𝑥, 𝑦 , 

Wasserstein distance

𝜇

𝜈
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Wasserstein distance

Wasserstein distance (discrete case)

Where: 

- 

- 𝑈 𝑛, 𝑛′ = 𝑃 ∈ ℝ+
𝑛×𝑛′

: 𝑃𝑛′ =
1

𝑛
𝑛, 𝑃𝑛 =

1

𝑛′ 𝑛′

- 𝐶𝜇,𝜈 = 𝑥𝑖 − 𝑧𝑗
2

𝑖=1…𝑛, 𝑗=1…𝑛′

𝜇 =
1

𝑛


𝑖=1

𝑛

𝛿𝑥𝑖
 𝜈 =

1

𝑛′ 

𝑖=1

𝑛′

𝛿𝑧𝑖

𝒲2 𝜇, 𝜈 =  𝑚𝑖𝑛
𝑃∈𝑈(𝑛,𝑛′)

𝐶𝜇,𝜈 , 𝑃 Transport plan

Cost matrix

𝜇

𝜈
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Wasserstein distance

Regularized Wasserstein distance

Entropic regularization

𝒲𝜆
2 𝜇, 𝜈 =  𝑚𝑖𝑛

𝑃∈𝑈(𝑛,𝑛′)
𝐶𝜇,𝜈 , 𝑃 − 𝜆𝐻(𝑃),     𝜆 > 0

𝑃𝜆 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈𝑈(𝑛,𝑛′)

 𝐿𝜆 𝜇, 𝜈, 𝑃

𝐿𝜆 𝜇, 𝜈, 𝑃 = 𝐶𝜇,𝜈 , 𝑃 − 𝜆𝐻(𝑃)

Smoothed transport plan

1- Without regularization

𝜆 = 0

𝑃0

2- With regularization

𝜆 > 0

𝑃𝜆

✓ Smoothing of the transport plans

   ✓ Sinkhorn: 𝑂 𝑛2 log 𝑛

[Peyré & Cuturi, 2019]
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Transferring fields with transport plans

𝑃𝜆
(𝑖)

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈ 𝑈(𝑛𝑖,𝑛𝑟𝑒𝑓)

 𝐿𝜆 𝜇𝑖 , 𝜇𝑟𝑒𝑓 , 𝑃 ∈ ℝ𝑛𝑖×𝑛𝑟𝑒𝑓

Part 1: getting transport plans (input space)

𝜇𝑟𝑒𝑓: reference measure of size 𝑛𝑟𝑒𝑓

𝜇𝑖 =
1

𝑛𝑖


𝑗=1

𝑛𝑖

𝛿 𝜙𝑊𝐿 𝐺 𝑖
𝑗
 : WL embeddings of input graph 𝑖

𝑃𝜆
(1)

𝜇1

𝜇𝑟𝑒𝑓
𝑃𝜆

(𝑁)

𝜇𝑁
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Transferring fields with transport plans

𝑃𝜆
(𝑖)

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈ 𝑈(𝑛𝑖,𝑛𝑟𝑒𝑓)

 𝐿𝜆 𝜇𝑖 , 𝜇𝑟𝑒𝑓 , 𝑃 ∈ ℝ𝑛𝑖×𝑛𝑟𝑒𝑓

Part 1: getting transport plans (input space)

𝑇(𝑖) = 𝑛𝑟𝑒𝑓𝑃𝜆
𝑖

⊤
 𝑦(𝑖) ∈ ℝ𝑛𝑟𝑒𝑓                 Transferred field

 𝑦(𝑖) = 𝑛𝑖𝑃𝜆
𝑖

𝑇(𝑖) ∈ ℝ𝑛𝑖                     Reconstructed field

𝜇𝑟𝑒𝑓: reference measure of size 𝑛𝑟𝑒𝑓

𝜇𝑖 =
1

𝑛𝑖


𝑗=1

𝑛𝑖

𝛿 𝜙𝑊𝐿 𝐺 𝑖
𝑗
 : WL embeddings of input graph 𝑖

Part 2: transferring output signals 

𝑃𝜆
(1)

𝜇1

𝜇𝑟𝑒𝑓
𝑃𝜆

(𝑁)

𝜇𝑁

𝑦(1)                 𝑦 𝑁

𝑇(1)                 𝑇(𝑁)
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How to choose the regularization parameter ?

Choose 𝜆 > 0 that minimizes the error (RRMSE) between 

- the train output fields and 

- the train reconstructed fields

Squared 

Error

True Reconstructed

Squared 

Error
…

Transferred
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How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures
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How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures Discretizations of manifolds
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How to choose a reference measure ?

2) Subsample from a train measure:

3) Uniform grid on a reference shape:

One train measure subsampled
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Express signals/fields in the same space?

Inputs Outputs Transformed Outputs

1

Transform

=

=

=

2

Reduce 

dimension

Size 𝑄Size 𝑛𝑟𝑒𝑓
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Dimension reduction (in practice)

Principal component analysis [Kontolati 2022]

𝑻 = (𝑇(1), ⋯ , 𝑇 𝑁 ) ∈ ℝ𝑁×𝑛𝑟𝑒𝑓                    ഥ𝑻 = 𝑻 centered

1

𝑁
ഥ𝑻⊤ഥ𝑻 = 𝐸𝐷𝑖𝑎𝑔(𝜆1, ⋯ , 𝜆𝑄)E⊤    

 𝜆1 ≤ ⋯ ≤ 𝜆𝑄 : eigenvalues

 E ∈ ℝ𝑛𝑟𝑒𝑓×𝑄: eigenvectors

𝑄 first PCA coefficients:  𝐶 = 𝑻𝐸 ∈ ℝ𝑁×𝑄 

PCA

Learn Q independent GPs 

using SWWL graph kernels for 

the inputs
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

45

TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

47

TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test

Embarrassingly parallel steps
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test

Regression model

Kernel

 

Dimension reduction

Auto-encoder

PCA

Wavelets



I) Scalar outputs

1- Gaussian process regression

2- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Datasets

1000+200 29773

Dataset name Train/Test Nodes Output fields

Rotor37 1000 / 200 ~30000

Tensile2d 500 / 200 ~9500

Multiscale 764 / 376 ~4600

Temperature 

(T)

H displacement 

(U)
Shear stress 

(σ12)

H displacement

(U)
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TOS-GP: regression scores

Small Medium Large

- The error decreases when the size of the reference 

increases

- It remains close to a constant beyond 1000 points

- The choice of the reference type has little importance 

for this problem

- The choice of the regularization parameter is critical
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TOS-GP: uncertainty propagation (field 𝜎12)

Ground truth Prediction 

(transferred 

space) 

Posterior std

(transferred 

space)

Posterior std
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TOS-GP: predictions and uncertainties

Ground truth Prediction Absolute error Posterior std
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TOS-GP: regression scores

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖 =

𝑦(𝑖) − ො𝑦 𝑖
2

2

𝑛∗𝑖 𝑦 𝑖
∞

2  

𝑅𝑅𝑀𝑆𝐸2 𝑦 𝑖
𝑖=1,⋯,𝑁∗

, ො𝑦 𝑖
𝑖=1,⋯,𝑁∗

=
1

𝑁∗


𝑖=1

𝑁∗ 

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖

RRMSE 

(10 exp)



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

57

Varying topologies: 2D_multiscale_hyperelasticity

Squared-exp using the MMD distance 

between the centers of the pores [Li et al. 2020]

Auto-encoder with convolutional 

and 2D discrete Fourier layers 

Regression model

Kernel

 

Dimension reduction

Auto-encoder

PCA

Wavelets
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction Absolute errorPrediction 

(transferred space)
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction

(TOS-GP)

Prediction

(MGN)
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction

(TOS-GP)

Prediction

(MGN)
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Conclusion

▪ SWWL graph kernel

✓ Positive definite

✓ Can consider very large graphs

Inputs = Graphs, Outputs = Scalars

Inputs = Graphs, Outputs = Signals

▪ Classical techniques impossible to use directly

MOGP, OVGP, GSP, dimension reduction, …

▪ TOS-GP: Transported Output Signal GP

Optimal transport + Dimension reduction

✓ Flexible (change kernel/dimension reduction)

✓ No assumption on the data (mesh/topology) 

✓ Few hyperparameters: 𝜆, ref. measure, WL iter.

▪ Future work

Consider more discontinuous signals

Optimal transport variants
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Gaussian process regression

▪ 𝒳 = 𝒢 is a set of  graphs.

▪  

▪ How to choose  k ?

Test locations: 

𝑮∗ =  (𝐺𝑖
∗)𝑖=1

𝑁∗
    

Predictions? 𝒇∗ = (𝑓(𝐺𝑖
∗))𝑖=1

𝑁∗
 ?

𝑲, 𝑲∗∗, 𝑲∗ : train, test, train/test Gram 

matrices

𝒚
𝒇∗

∼ 𝒩 0,
𝑲 + 𝜎2𝐼 𝑲∗

𝑇

𝑲∗ 𝑲∗∗
 

Noisy observations:     

y = 𝑦𝑖 𝑖=1
𝑁      with yi = 𝑓 𝐺𝑖 + 𝜖𝑖 where 

𝜖𝑖~𝒩 0, 𝜎2 ,  𝑓: 𝒳 → ℝ

Gaussian prior over functions:

 𝑓 ~ 𝒢𝒫 0, 𝑘  where 𝑘: 𝒢 × 𝒢 → ℝ is a 

symmetric positive definite kernel

Posterior distribution: 

𝒇∗ | 𝑮, 𝒚, 𝑮∗ ~ 𝒩( ഥ𝒎, ഥ𝚺)

predictive mean

uncertainties

ഥ𝒎 = 𝑲∗ 𝑲 + 𝜎2𝐼 −1𝒚

ഥ𝚺 = 𝑲∗∗ − 𝑲∗ 𝑲 + 𝜎2𝐼 −1𝑲∗
𝑇𝑘 = ? , 



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

66

SWWL kernel: experiments

[Kriege et al., 2019]
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MMD subsampling procedure

Maximum mean discrepancy:

𝑀𝑀𝐷𝑘 𝜇, 𝜈 = 𝔼𝑥∼𝜇,𝑥′∼𝜇 𝑘 𝑥, 𝑥′ +𝔼𝑦∼𝜈,𝑦′∼𝜈 𝑘 𝑦, 𝑦′ − 2𝔼𝑥∼𝜇,𝑦∼𝜈[𝑘(𝑥, 𝑦)] 

Input:  𝜇 a given measure in the train set.

Output: 𝜈 the subsampled measure.

𝜈 =  ∅
At each iteration, choose the point 𝑥 in the 

support of 𝜇 that minimizes the MMD 

between 𝜇 and 𝜈 + 𝛿𝑥, and update 𝜈.

𝜇

𝜈

…
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