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Oumar [et al.] 132

From the analysis of experimental shock dynamic films to Bayesian calibration
of physical models, Garcia Lisa [et al.] 134

6



Sensitivity analysis of multi-scale energy power system models, Stefano Tarantola 136

Rethinking the Surrogate Model in Efficient Global Optimization, Zizhou
Ouyang [et al.] 136

Bayesian calibration for hybrid prognostics of steam generators clogging, Jaber
Edgar [et al.] 139

Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian
optimization techniques, Palazzolo Lucas [et al.] 141

Forward Sweep Interval Sensitivity in Neural Network Functional Approxi-
mation, Ochnio Dawid [et al.] 143

Application of HSIC-Lasso for high-dimensional feature selection in shapelet-
based decomposition, Pelamatti Julien [et al.] 145

Epistemic uncertainty management in risk assessment: connections between
robustness and sensitivity analysis tools, Ajenjo Antoine [et al.] 147

Gradient-enhanced surrogate modelling and sensitivity analysis with chaos
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Abstract

Numerical simulation in computational fluid dynamics (CFD) is crucial for modeling complex
physical phenomena, but it is time-consuming and resource-intensive, largely due to the fine
meshes needed to capture detailed flow features. These costs increase when multiple simulations
are required, such as for uncertainty quantification. In this context, metamodels offer an efficient
solution to predict results, such as physical fields, from a limited number of simulations.

Predicting physical fields is particularly challenging due to their high dimensionality, which is
associated with the size of the mesh. A field can contain thousands or even millions of data
points, making it difficult to manage effectively in a predictive model. Additionally, these fields
must adhere to physical constraints, such as conservation equations, to ensure the physical
validity of the results. Therefore, it is essential to develop supervised methods capable of
addressing both the high dimensionality and the associated physical constraints. In this work,
we will consider the problem of building metamodels for physical fields under linear constraints
that can be formulated as a multi-output regression problem with linear constraints :





find f = [fT1 , ..., f
T
Q]

T such that y = f(x),

F [f(x)] =

Q∑

j=1

αj(x)fj(x) = c(x).
(1)

where x is the input parameter and y is the output of the code, which is concatenation of the
scalar field values computed over a given mesh from a vector or tensor field. The constraint
under consideration deals with the relationships between scalar fields and depends on the input
parameters.

Previous research has tackled dimensionality reduction for field prediction by combining di-
mensionality reduction techniques with regression models [2], [3]. In [2], they proposed a
framework that involves using linear principal component analysis (PCA) to project the out-
puts into low-dimensional space and applying independant Gaussian process (GP) regression on
the coordinates, as they are uncorrelated. [3] extended the framwork to handle more complex
data, such when a linear subspace fail to give a faithful representation of the data, by introduc-
ing non linear dimensionality reduction techniques. However, explicit consideration of physical
constraints or simultaneous modeling of multiple high-dimensional physical fields has not been
thoroughly explored.
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Constrained Gaussian process: In the litterature, Gaussian Process regression has gained
popularity for metamodelling due to its flexibility and capability to provide uncertainty on
prediction. The use of Gaussian Process for physical problems has led the machine learning
community to develop methods for incorporating constraints into GPs. Since then, various
approach have been developped, ranging from conditionning the GP on data points using Bayes’
rule, to encode linear constraints into the kernel by restricting to solutions of linear operator
matrices [1]. Thus, we propose to use the parametrisation approach to constraint the GP
regression in the reduced space under assumption that the output projection and reconstruction
preserves linear constraint. So consider the problem of imposing a linear onstraint on a vector-
valued Gaussian process f ∼ GP(µf (x),Kf (x,x

′)), µf (·) : RD 7→ RP ,Kf (·, ·) : RD × RD 7→
RP × RP defined by the following linear operator:

L[f] = 0 (2)

The parametrization approach is based first on the principle of stability of Gaussian Pro-
cesses under linear transformations, and then uses this principle to impose constraints on a
linear operator, ensuring that the constraint is satisfied regardless of the underlying func-
tion. This technique involves considering that the function f is related to another function
g via an operator G : Rs 7→ RP . The operator is conditioned, and a GP prior is placed on
g ∼ GP(µg(x),Kg(x,x

′)), from which the prior on f is derived :

µf (x) = Gx[µg] Kf (x,x
′) = GxKgGT

x′

PCA and constrained GP: To address the high dimensionality problem and ensure prediction
under linear constraints for physical fields, we propose combining PCA with constrained GP
regression, following the parametrization approach. The linearity of PCA is leveraged to validate
the aforementioned hypothesis, meaning that the projection and reconstruction procedure of the
data preserve the constraint. This implies that by ensuring the prediction of the weights using
constrained GP, we can predict fields under constraints.

We validate this framework through a case study involving the prediction of a constrained
tensor field derived from CFD simulations using the CFD code TrioCFD, developed in CEA,
demonstrating its effectiveness in preserving constraints and predicting physically meaningful
fields.
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A new paradigm for global sensitivity analysis

Gildas Mazo
Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France

Current theory of global sensitivity analysis, based on a nonlinear functional ANOVA decomposi-
tion of the random output, is limited in scope—for instance, the analysis is limited to the output’s
variance and the inputs have to be mutually independent—and leads to sensitivity indices the
interpretation of which is not fully clear, especially interaction effects. Alternatively, sensitivity
indices built for arbitrary user-defined importance measures have been proposed but a theory to
define interactions in a systematic fashion and/or establish a decomposition of the total importance
measure is still missing. It is shown that these important problems are solved all at once by adopt-
ing a new paradigm. By partitioning the inputs into those causing the change in the output and
those which do not, arbitrary user-defined variability measures are identified with the outcomes of
a factorial experiment at two levels, leading to all factorial effects without assuming any functional
decomposition. To link various well-known sensitivity indices of the literature (Sobol indices and
Shapley effects), weighted factorial effects are studied and utilized.
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This paper introduces a familly of generalized sensitivity index for Hilbert space-valued random
variables, extending the framework of global sensitivity analysis (GSA) to accommodate more
complex output spaces. The need for this work stems from the growing complexity of computer
models in various scientific and engineering fields, where understanding the influence of inputs on
outputs is crucial but often challenging due to computational constraints.

We build on recent advancements in dependence measures [1] and propose new sensitivity indices
that quantifie the influence of a real-valued input X on a Hilbert space-valued output Y . This
generalization allows for a more thorough analysis of complex systems, accommodating outputs
that may be functional or high-dimensional.

The paper begins by establishing the mathematical framework, defining the conditional law and
conditional expectation for Hilbert space-valued random variables. We then introduce the concept
of equivalent random variables, which is central to the definition of our sensitivity index.

To address the crucial issue of estimation for this proposed generalized sensitivity indices, Λφ, we
propose an estimation method based on rank statistics, inspired by the work of Gamboa et al.
[3] and following the approach introduced by Chatterjee [2]. This method provides advantages
over traditional estimation techniques, particularly in terms of computational efficiency and the
capability to estimate multiple indices simultaneously.

The rank-based estimation approach uses the ranks of the input and output variables to approxi-
mate the sensitivity index. This is particularly advantageous for Hilbert space-valued outputs, as
it avoids the complexities associated with direct estimation in high-dimensional spaces.

The estimation procedure involves computing the ranks of the Xi values from a sample of n obser-
vations (Xi, Yi), ordering the Yi values according to these ranks, and constructing the estimator for
Λϕ based on the differences between consecutive ordered Y(Ri) values. This rank-based approach
is computationally efficient, allows simultaneous estimation of multiple sensitivity indices, and is
robust to outliers and non-linear relationships. Under appropriate conditions, the estimator is
consistent and asymptotically normal, providing a basis for constructing confidence intervals and
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hypothesis tests.

We provide a detailed analysis of the statistical properties of this estimator, including consis-
tency and asymptotic normality results. These theoretical guarantees support the reliability of the
proposed estimation method in practical applications.

Furthermore, we conduct numerical experiments to compare the performance of our rank-based
estimator with traditional methods. These experiments demonstrate its efficiency and accuracy
across a range of scenarios, including those with complex, high-dimensional outputs.
Our work contributes to the field of GSA by offering a rigorous and implementable tool for analyzing
the sensitivity of complex, Hilbert space-valued outputs. The proposed index and its estimation
method provide a means of understanding input-output relationships in high-dimensional and
functional settings, with potential applications in various scientific and engineering disciplines.
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Mathematical models are essential for evaluating and optimizing the performance of complex 

processes, providing insights into key performance indicators (KPIs) such as cost, efficiency, and 

environmental impact. However, these models often function as black-box systems, where underlying 

equations and derivative information are unavailable, making optimization challenging. This is 

particularly true for commercially available simulators that rely on steady-state models and heuristic 

rules, which complicate the identification of optimal process configurations. In such cases, data-driven 

optimization techniques, like Bayesian Optimization (BO), become highly valuable. 

 

Bayesian Optimization (BO) is well-suited for handling expensive, black-box models (Brochu et al., 

2010). However, BO may be challenged by high-dimensional problems. In this context, Global 

Sensitivity Analysis (GSA) can help identify the most influential variables that drive variability in the 

objective function (Saltelli et al., 2010). By quantifying both individual and interaction effects, GSA 

can reduce the variable set to only the critical ones (Kucherenko, 2013), improving BO efficiency.  
The integration of BO with GSA still faces challenges in balancing computational efficiency and 

solution accuracy, particularly when applied to complex simulation-based models. Additionally, 

surrogate-based models, while faster to evaluate, may not fully capture the true objective function, 

leading to suboptimal solutions. 

 

In this work, we compare simulation-based and surrogate-based Bayesian optimization (Triantafyllou 

et al., 2024). For the simulation-based methods, we first apply Bayesian Optimization (BO) to the full 

set of decision variables. Next, we incorporate GSA as a dimensionality reduction step, followed by 

BO on the reduced variable set. For the surrogate-based approaches, we begin by using GSA to 

identify the key variables that significantly influence the objective function. These variables are then 

used to train feed-forward neural networks (ANNs), resulting in simpler, lower-dimensional surrogate 

models. We then optimize the ANNs using two different approaches: BO and mixed integer 

programming (MIP) with a big-M reformulation of ReLU ANNs (Triantafyllou et al., 2024; Ceccon et 

al., 2022). 

 

The performance of both simulation-based and surrogate-based methods is evaluated using two 

benchmark case studies with different flowsheet simulators: (a) plasmid DNA production in SuperPro 

Designer with 18 decision variables, and (b) dimethyl ether (DME) production in Aspen HYSYS with 

14 decision variables. Generally, simulation-based methods yield superior solutions since they 

evaluate the true objective function at each step, whereas surrogate-based approaches optimize an 

approximation (ANN) of the true objective function. This can lead to the ANN having optima that 

differ from the true objective function both globally and locally (Figure 1). However, the Bayesian 

optimization of the ANN (GSA-ANN-BO) consistently demonstrates the fastest execution times, 

achieving reductions of two to three orders of magnitude compared to simulation-based BO, without 

accounting for the time taken for initial sampling. This makes it particularly advantageous for real-

time and resource-constrained optimization tasks, where computational efficiency is critical without a 

significant loss in solution quality. 

8



 

 
Figure 1. Overview of the optimization methods applied to manufacturing process optimization across the 

SuperPro Designer (a, b) and Aspen HYSYS (c, d) case studies (adapted from Triantafyllou et al., 2024). The 

simulation-based approaches include pure Bayesian optimization (BO) and Bayesian optimization combined 

with global sensitivity analysis (GSA-BO). The surrogate-based approaches consist of GSA-enhanced neural 

networks optimized using mixed-integer linear programming (GSA-ANN-MILP) and Bayesian optimization of 

GSA-enhanced neural networks (GSA-ANN-BO). For the Bayesian optimization methods, the plots display the 

median values along with confidence intervals (1st and 3rd quartiles) based on 10 random seed runs. The best 

value identified using Sobol sampling is also shown for comparison. 
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Greedy packing algorithms with relaxation

Luc Pronzato
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Following [1], we consider various relaxations of the greedy-packing algorithm for the construction
of nested designs (or design sequence) on a given compact set X. The standard, non-relaxed,
greedy-packing algorithm guarantees 50% packing and covering efficiency for each design in the
sequence [2]. However, it places many design points close to the boundary of X, and a first form of
relaxation aims at countering this effect and relies on boundary avoidance [3]: bounds on packing
and covering efficiencies are still available, and an improvement in covering performance is observed
in practice.

Relaxation can also include some randomness, with bounds on packing and covering efficiencies
that can be set arbitrarily close to 50%. Compared to the now popular determinant point processes,
the construction of a design of given size n is straightforward (but its stochastic properties are much
more difficult to analyse).

When X is the hypercube [0, 1]d, the construction can take projections onto canonical subspaces
into account, with the generation of random Latin hypercube (Lh) designs as a special case.

Greedy minimisation of the energy for an isotropic kernel K is also a form of relaxed greedy
packing: here, each of the n design points present at iteration n has an influence on choice of the
next point xn+1. The kernel can be singular, which induces a strong repulsive property between
points. It can also be positive definite and define a correlation function for a random process on
X, with Matérn kernels as special cases. When the correlation length tends to zero fast enough,
the sequence of nested designs is then asymptotically 50% packing and covering optimal.

Finally, the practical implementation of the methods above requires the usage of a big but finite
candidate set where points are selected sequentially, which is sometimes a significant limitation:
for example, generating a random n-point Lh design in [0, 1]d requires a candidate set with nd

points, which is prohibitively large. A method is proposed which does not have this limitation
and selects the coordinates one at a time for each new design point in the sequence (without any
guarantee on the packing and covering efficiencies, however).
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Active subspace methods have become a popular tool for global sensitivity analysis and dimension
reduction for a computer model [1]. In this talk, we discuss an elegant generalization of traditional
active subspace methods to perform a joint analysis of two “adjacent” computer models [2]. This
approach allows us to define co-active direction, joint sensitivity indices (co-activity), and a scalar
metric called “concordance” which measures the alignment (or non-alignment) of the gradient
spaces of the two functions. An algorithm, based on [3], permits fast computation and implemented
in a publicly available R package.
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Robust Bayesian Analysis with information geometry and
Perturbed-Law based sensitivity Indices
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Abstract

In modern science and engineering, computational models are popular tools for assessing the be-
havior of physical systems. They may be seen as maps associating some input parameters to
quantities of interest (QoI) related to the response of the system under study. Despite their in-
creasing fidelity, computational models remain simplified representations of the real system, and
their input parameters are often not perfectly known. As a result, the QoI predicted by such
models are tainted with uncertainties.

Bayesian inference constitutes a coherent framework for quantifying uncertainties and updating
them by taking into account all available information. This framework is based on a probabilistic
description of uncertainties and relies on the definition of a prior distribution, which encodes a
state of knowledge about some input parameters before making any observations. Then, this
prior state of knowledge can be updated through the derivation of a posterior distribution, which
summarizes all the available information once new data have been observed. In particular, the
general framework of Bayesian inference can be applied to inverse problems, in order to update
uncertainties of input parameters of computational models from noisy and limited observation
data.

The selection of the prior distribution is of utmost importance in the framework of Bayesian
inference. This even constitutes a common criticism directed at Bayesian inference. The prior
enables the integration of both qualitative and quantitative information related to parameters,
including diverse sources such as past experiments, data taken from existing literature, or beliefs
of one or several analysts (i.e., expert judgment). Hence, encoding such various information into
a single probability distribution appears as a non-trivial task. In this context, the field of Robust
Bayesian Analysis, introduced in the early 90s, provides theoretical and computational foundations
for the analysis of the influence of the choice of the prior on Bayesian inference results [1,2]. It
aims at quantifying the range of variation of a given QoI by assuming that the prior belongs to a
set of probability distributions, which represents all the possible choices for the prior.

More recently, a new Uncertainty Quantification (UQ) branch, named Robustness Analysis, has
emerged in the field of sensitivity analysis [3,4]. It aims at measuring the impact of the choice of
an input distribution, by studying variations of a QoI with respect to this choice. In particular,
an interesting method is given by Perturbed-Law based Indices (PLI), originally introduced in
the field of reliability analysis [5,6]. These sensitivity indices are simply defined by the relative
variation of the QoI, for a given perturbation of the input distribution. In the recent literature,
PLI have been proposed for various types of QoI, including failure probabilities [5,6], quantiles [4]
or superquantiles [3].

We propose to study the influence of the choice of the prior distribution, through the definition of
PLI dedicated to Bayesian inference. The definition of the proposed PLI is based on the recent work
of [4], which provides a formal and coherent framework for perturbing input distributions. Such a
framework is based on concepts taken from information geometry, notably the Fisher distance on
manifolds of probability distributions.

Furthermore, we show that the proposed PLI can be reformulated as the relative variation of
some failure probabilities, by using the so-called BUS (Bayesian Updating with Structural relia-
bility methods) framework introduced in [7], which establishes an equivalence between Bayesian
inference and a reliability analysis problem. Such a reformulation of the proposed PLI is particu-
larly appealing from a computational point of view, since it allows the use of estimation techniques
tailored for PLI of failure probabilities [5,6]. As a result, the proposed PLI are estimated through
a reverse importance sampling mechanism [5].
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The proposed approach is applied to various Bayesian inverse problems with varying complexity.
The results suggest that the proposed Bayesian PLI enable to identify the parameters for which
the choice of the prior has a significant impact on Bayesian inference results. Moreover, results
underline that the proposed approach remains feasible in the case of Bayesian inverse problems
with nonlinear models and possibly high-dimensional inputs.
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Structural reliability analysis is a crucial part of designing systems that can withstand uncertainty in
loading and material properties. Reliability methods provide solutions for evaluating failure
probabilities, which can be highly sensitive to input variables. Understanding how changes in input
variables affect failure probability is essential for optimization and safety enhancement.
Two kinds of sensitivity analysis of failure probability have been investigated with respect to
deterministic and random parameters. The sensitivity measure considered herein is the sensitivity
analysis of failure probability with respect to distribution parameters, with the sensitivity index
defined as the partial derivative of failure probability with respect to the distribution parameters. Most
of existing methods for computing such partial derivative have been developed as the post-processing
step of an existing strategy for reliability analysis. Based on first-order reliability method (FORM) and
second-order reliability method (SORM), the sensitivity of failure probability is computed with the aid
of the so-called design point [1, 2]. Identifying the design point in highly nonlinear problems is
challenging, making this sensitivity analysis method unsuitable for such cases. Another approach is
simulation methods, such as the crude Monte Carlo Simulation [3], Importance Sampling [4], Lines
Sampling [5] and Subset Simulation [6]. A key advantage of simulation methods is that the samples
generated for estimating failure probability can be post-processed for sensitivity analysis without the
need for additional structural analyses. However, the accuracy of failure probability relies greatly on
the quality of sample generation, leading to a significant drop in computational efficiency for small
failure probability problems. To decrease the number of structural analyses, surrogate models are
adopted with combination of the simulation methods for sensitivity analysis, such as the Kriging
model [7]. Although computational efficiency can be enhanced with the help of surrogate models, this
introduces new challenges related to the construction of the surrogate model. In summary, the
effectiveness of sensitivity analysis methods is significantly affected by the underlying reliability
analysis techniques used. The method of moments [8] has been widely used for reliability analysis,
demonstrating both efficiency and accuracy in addressing nonlinear problems and those with small
failure probabilities. A sensitivity estimation framework based on the method of moments was
proposed [9], focusing on methods that utilize the first, second, and fourth moments. Building on this
approach, an analytical sensitivity estimation method using the fourth moment has been developed,
with inputs modeled as normal random variables.
The present work introduces a third-moment method for estimating the partial derivatives of failure
probability with respect to the mean, standard deviation, and skewness of input random variables.
Assuming the variables are independent, the sensitivity index is formulated using the third-moment
reliability index. An efficient numerical algorithm is developed, enabling the sensitivity index to be
computed as a byproduct of the reliability analysis. Numerical examples demonstrate that the proposed
method accurately estimates the sensitivity of failure probability with respect to the mean and standard
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deviation. Additionally, for random variables with small positive or negative skewness, the sensitivity
of failure probability with respect to skewness can be reliably estimated.
This study offers three key innovations: (1) It is the first to provide a comprehensive investigation of
the third moment method for sensitivity estimation. (2) It includes a detailed numerical algorithm
based on the dimension reduction method, where all required inputs are obtained as byproducts of the
reliability analysis. (3) It explores the derivative of failure probability with respect to skewness
through practical examples.
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Abstract

In computational physics, machine learning has now emerged as a powerful complementary tool
to explore efficiently candidate designs in engineering studies. In this context, we would like to
be able to easily predict fields defined on meshes corresponding to new geometries without the
need for costly simulations. While some methods like Graph Neural Networks [4] are intrinsically
designed to predict signals defined on graphs or point clouds, a natural question is the extension
of general scalar output regression models to such complex outputs. Changes between input
geometries in terms of both size and adjacency structure in particular make this transition non-
trivial. Another key challenge is the obtention of predictive uncertainties, which is crucial to
certify the quality of results, to assist sequential design of experiments or to plug the models
into Bayesian optimization workflows.

In this work, we propose an innovative strategy for Gaussian process regression where inputs
are large and sparse graphs with continuous node attributes and outputs are signals defined on
the nodes of the associated inputs. The methodology relies on the combination of regularized
optimal transport [3], dimension reduction techniques [2], and the use of Gaussian processes
[5] indexed by graphs. It extends previous work on Gaussian processes with Sliced Wasserstein
Weisfeiler Lehman graph kernels [1] previously limited to scalar outputs. In addition to enabling
signal prediction, the main point of our proposal is to come with confidence intervals on node
values.

We illustrate the efficiency of the method with regression tasks involving large graphs from
mesh-based simulations in computational fluid dynamics and mechanics 1. Train datasets are
made up of a few hundred graphs with their respective 2D/3D coordinates, where adjacency
matrices vary between several inputs, and output fields represent physical quantities of interest
on the nodes such as the pressure or the temperature. In Figure 1, we show predictions and
associated uncertainties for two test samples of a problem in computational mechanics.

1Datasets: https://plaid-lib.readthedocs.io/en/latest/source/data_challenges.html

1
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Figure 1: Predictions for two test meshes from the Tensile2d dataset (top and bottom lines). From
left to right: the input mesh, the predicted field and the posterior standard deviation of the Gaussian
process regression.
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Utilising ordinary differential equation (ODE) models within systems biology (SB) allows for a
more comprehensive representation of biological systems and their dynamics on a global scale,
which may not be feasible with higher-order representations. By “global-scale dynamics,” we re-
fer to the ability of ODE models to capture the behaviour of entire biological systems over time,
considering interactions across multiple scales—from molecular to cellular, and even organ-level
processes [1]. For instance, an ODE model of the cardiovascular system might simultaneously
account for the dynamics of heart muscle contraction, blood flow through arteries, and the regu-
lation of blood pressure by the nervous system. This integrated approach enables researchers to
understand how changes at the molecular level, such as alterations in ion channel function, can
affect overall heart function and lead to systemic conditions like hypertension or heart failure. SB
research in recent years has focused on the personalisation of these models in order to negate the
need for invasive tests and predict patient outcomes.

The personalisation process utilises ODE models as virtual representations of specific biological
processes [2], such as predicting a patient’s metabolic response to a meal, personalising medical
treatment based on tumour growth, or identifying cardiac pathophysiology through abnormal pa-
rameter values. The personalisation problem has gained popularity alongside the rise of the ”digital
twin” concept [3]. In drug discovery and the development of less invasive medical tests, the ability
to personalise ODE models to inform medical decisions and predictions is increasingly crucial.
With the adoption of such practices in the medical field, it is essential to quantify the uncertainty
associated with any information inferred from these models. In the personalisation problem, the
focus is often on a select set of model outputs that correspond to the available experimental data,
which are used to calibrate the model parameters. In order to identify which parameters can be
used to inform medical decisions one often performs a global sensitivity analysis [4]. In doing this
the influential input parameters present themselves which are responsible for causing the largest
variation in the outputs. However, this talk examines if this is sufficient enough for personalisation.

Figure 1 is a proposal for the personalisation of a standard ODE based systems biology model
which emphasises the recursive nature of the personalisation process. For example, once a person-
alisable subset of parameters have been obtained, if said subset does not contain the biomarkers
(input parameters), one must work with clinicians to establish what additional data can be ob-
tained for a patient and thus GSA and subset selection can be iterated. In order to obtain a
subset of input parameters which are likely to be identifiable. From figure 1 we propose that the
personalisation process should be a largely offline process to obtain the best case personalisable set
of input parameters. This stage is informed by GSA and subset selection methods. Then one per-
forms an uncertainty analysis to examine if the parameter bounds prescribed are sufficient. Once
we subsequently begin to constrain the model with experimental data, to personalise the model,
this stage involves the optimisation and calibration of the model parameter values. Also, one can
then begin to examine the practical identifiability of the model parameters which allows one to
examine the uniqueness of the personalisable subset of model parameters given noisy clinical data.
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The proposed workflow below defines a novel approach to quantifying the uncertainty associated
with systems biology.
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Figure 1: The Personalisation Process: Schematic highlighting the vital uncertainty quantifi-
cation and sensitivity analysis stages involved in the personalisation of a systems biological model.

Conclusion/Main Contribution

In this talk, we propose and evaluate an extended workflow, centred on performing a comprehensive
global sensitivity analysis, to improve the personalisation of models of systems biology. We compare
this novel approach with previous personalisation methodologies, emphasising new considerations
and highlighting the importance of offline model investigations involving global sensitivity analysis
to ensure that the identified parameters are both identifiable and experimentally informative. The
talk concludes with a discussion of the key challenges associated with sensitivity analysis in systems
biology research.
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Global Sensitivity Analysis (GSA) is an important tool to better understand the behavior of black
box models. Among the numerous methods for GSA, variance-based approaches have received
much attention (Sobol’ indices introduced in [1]). Only a few papers focus on Quantile Oriented
Sensitivity Analysis (QOSA), which can help in analysing the behavior of the response at different
quantile levels [2 , 3, 4, 5]. In [6], we introduced a new estimation procedure of QOSA indices based
on the notion of projected random forest [7], with the initial random forest built from a criterion
designed for quantiles: the pinball loss also known as quantile loss [8], with theoretical guarantees.
Although informative, QOSA indices suffer from the drawback that they do not obey, even in the
framework of independent inputs, any analogue to the variance decomposition offered by Sobol’
indices through the theorem of Hoeffding [9]. This is the main reason why [5] introduced new
indices based on the Shapley values [10]. While [11] introduced Shapley effects as variance-based
measure importance, [12] suggested to adapt the value function to reach information on quantiles.
In the present work, we propose to estimate the so-called quantile-oriented Shapley effects (QOSE)
by combining the projection [7] of random forests built with from the quantile oriented criterion
we introduced in [6], as far as arguments from Lundberg et al. Algorithm [13]. We implement our
estimation procedure on both analytical examples and real data.
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Figure 1: Box-plot on toy example with 100 repetitions. Red cross is ground truth. Red box is
estimation from exhaustive search, blue box is our Monte-Carlo approximation result.

Model setting in Fig. 1:

Y = β⊺X, with β = (1, 1, 1)⊺. X ∼ N (µ,Σ) with µ = (0, 0, 0)⊺,Σ =




σ2
1 0 0
0 σ2

2 ρσ2σ3

0 ρσ2σ3 σ2
3


 , σ1 =

σ2 = 1, σ3 = 2, ρ = −0.5, 0, 0.5. Sample size n = 2000.
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Abstract

Sensitivity analysis is a pivotal technique in numerous scientific and engineering disciplines,
employed to quantify the influence of input uncertainties on model outputs. One of the most
frequently employed methodologies for global sensitivity analysis is the computation of Sobol
indices [1], which provide a measure of the contribution of each input variable to the output
variance. However, the computation of Sobol indices is frequently a time-consuming process due
to the necessity for extensive sampling from the original simulation model. The computational
burden can be alleviated by using surrogate models, such as Gaussian Process (GP) models [2],
which substitute the original code with a statistical regression model that is computationally
efficient. However, the accuracy of the estimated Sobol indices is contingent upon the quality
of the fitted metamodel, which in turn depends on the design of computer experiments (DoE)
used for its training.

The objective of this work is to discuss techniques of active learning to guarantee the quality of
the metamodel. Our goal is to improve the efficiency and accuracy of Sobol indices estimation
by optimising the DoE used to fit GP metamodels. This process requires the initial DoE to be
augmented with points that are deemed most impactful according to an acquisition function.
Our approach relies on the use of Derivative-based Global Sensitivity Measures (DGSM) [3]
or its variants to derive a relevant acquisition function. We will explore these techniques in
the context of complex inputs, which may include groups of dependent random vectors and
functional inputs. The various adopted strategies will be tested numerically on a range of
examples, from toy functions to real-world problems. In particular, the method will be applied
to the digital twin of a French vineyard catchment (Beaujolais region) with the aim of designing
a vegetative filter strip and reducing the transfer of water, sediment, and pesticides from the
fields to the river [4, 5].
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I hold a Master’s degree in Applied Mathematics from the University of Lyon. I am a second-
year PhD student at École Centrale de Lyon and INRAE Lyon, supervised by Céline Helbert
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handle complex input data, with applications to water quality modeling. The research is part
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Additive functional decomposition of arbitrary functions of random elements, under the form of
high-dimensional model representations (HDMR) [1] is crucial for global sensitivity analysis [2] and
more generally understanding black-box models. Formally, for random inputs X = (X1, . . . , Xd)

⊤,
and an output G(X), it amounts to finding the unique decomposition

G(X) =
∑

A∈D

GA(XA), (1)

where D = {1, . . . , d}, D is the set of subsets of D, and GA(XA) are functions of the subset of input
XA = (Xi)i∈A. Whenever the Xi are assumed to be mutually independent, such a decomposition
is known as Hoeffding’s decomposition. It is well known to allow the derivation of meaningful
Sobol’ indices for the analysis of the output variance, among others. Whenever the inputs are not
assumed to be mutually independent, several generalizing approaches have been proposed in the
literature [3-7], but at the price of imposing restrictive assumptions on the correlation structure or
lacking interpretability.

Our recent works [8] hightlights the necessity of proposing a new framework at the cornerstone
of probability theory, functional analysis, and abstract algebra to understand how Hoeffding’s
decomposition can be generalized in a more broader way to dependent inputs. By viewing random
variables as measurable functions, we prove that a unique decomposition such as (1), for square-
integrable black-box outputs G(X), is indeed possible under two fairly reasonable assumptions on
the inputs:

1. Non-perfect functional dependence;

2. Non-degenerate stochastic dependence.

While the first condition, extending non-multicolinearity, appears to very classical, the second
condition can be understood through the prism of angles between subspaces of L2, using a gen-
eralized notion of covariance between such subspaces. This originates from the following fomal
rationale. Denote σX the σ-algebra generated by X, and L2σX the space of square-integrable
σX -measurable real-valued functions (real-valued functions of X). From the proposed framework,
defining a decomposition such as in (1) equates to defining a direct-sum decomposition of L2σX of
the form

L2σX =
⊕

A∈D

VA,

where VA are some linear vector subspaces of functions of XA, which can be completely character-
ized.

In addition, novel sensitivity indices based on this generalized decomposition can be proposed, along
with theoretical arguments to justify their relevance. They first highlight that the popular SHAP
method to decompose predictions is theoretically sound if and only if the inputs are mutually
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independent. Besides, they lead to four new indices for quantifying the importance of inputs,
based on the variance decomposition of G(X). They allow the disentanglement of effects due to
interactions and the effects due to the dependence structure. Such indices will be discussed, and
a first illustration of the generalized decomposition involving Bernoulli random inputs, typically
used in failure tree modeling in the industrial world, will be presented.

References:

[1] H. Rabitz and O. Alis, General foundations of high-dimensional model representa-
tions”, Journal of Mathematical Chemistry, 25: 1572-8897, 1999.

[2] S. Da Veiga and F. Gamboa and B. Iooss and C. Prieur, ”Basics and Trends in
Sensitivity Analysis: Theory and Practice in R”, SIAM, 2021.

[4] J. Hart and P.A. Gremaud, ”An approximation theoretic perspective of Sobol’ indices
with dependent variables”, International Journal for Uncertainty Quantification, 8, 2018

[5] G. Chastaing and F. Gamboa and C. Prieur, ”Generalized Hoeffding-Sobol decompo-
sition for dependent variables - application to sensitivity analysis”, Electronic Journal of Statistics,
6: 2420-2448, 2012

[6] G. Hooker, ”Generalized Functional ANOVA Diagnostics for High-Dimensional Func-
tions of Dependent Variables”, Journal of Computational and Graphical Statistics, 16: 709-732,
2007.

[7] F.Y. Kuo and I.H. Sloan and G.W. Wasilkowski and H. Woźniakowski, ”On decom-
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The simulation and understanding of potential radionuclide release scenarios and the transport of 

radionuclides through the host rock is a crucial component of the safety assessment of radioactive 

waste repositories in deep geological formations. In this study, we present our approach to use 

Geostatistical and Global Sensitivity Analysis techniques to optimize models with regard to host rock 

retardation mechanisms. 

The aim is to evaluate parameter relevance for geological and geochemical modeling to enable 

prioritization of the most significant ones with respect both to future experimental and modelling 

resource assignments. Sorption onto mineral surfaces is an important retardation process for 

radionuclide migration through host rock and groundwater systems. Thus, a realistic parameterization 

of the geological as well as geochemical models is essential. There, heterogeneities of the host rock 

and the high complexity of the associated geochemistry pose challenges. 

 

We developed a modular workflow with the following consecutive steps: 

 Geostatistical simulation of a large number of realizations of the host rock based on real 

samples. This allows a quantitative statement to be made about the statistical dispersion of the 

mineralogical composition of the host rock. 

 Determining the minerals exposed along potential and existing pathways for radionuclides 

dissolved in aqueous fluids. 

 Geochemical simulation based on mechanistic calculations of the solid/liquid distribution 

coefficients Kd [1]. The input data is composed of the relevant mineralogical composition of 

the host rock, the composition of the aqueous fluids and thermodynamic sorption data (surface 

complexation models and ion exchange). 

 The input data described above as well as the calculated Kd values are feeding a Sensitivity 

Analysis. Main effects and interactions are evaluated using the HDMR (High Dimensional 

Model Representation) and CUSUNORO (Cumulative sum of reordered normalized output) 

techniques [2, 3]. 

 

The workflow is implemented in Python. The geostatistical simulation is based on the truncated multi-

Gaussian approach [4]. For the geochemical simulation, GWB (The Geochemist’s Workbench) with a 

Python plug-in is used [5].  Additionally, a user-friendly toolbox is developed that supports the Global 
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Sensitivity Analysis by incorporating techniques such as regression methods, ANOVA (Analysis of 

Variance), and graphical methods. 

In our workflow, the sensitivity analysis is an essential tool for evaluating and simplifying the 

geostatistical and geochemical models, thus saving costs and computing time. In addition, our 

workflow provides information about the ability of the host rock of a potential repository to retain 

radionuclides. Thanks to the uncertainty analysis, information can also be provided about the 

reliability of this statement. 
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The principle of global sensitivity analysis (GSA) is to quantify the influence of input variables
(viewed as independent random variables) on the output of a multivariate function, often expensive
to evaluate. (Total) Sobol indices, although commonly used for this purpose, are numerically
expensive to estimate. Through Poincaré inequalities, they can be upper bounded by using DGSM
(Derivative Global Sensitivity Measures), which are cheaper to compute (see [2]). This makes
DGSM cost-effective alternatives for identifying non-influential variables.

In the preprint [1], we develop the use of weighted Poincaré inequalities in dimension 1 for GSA.
These are similar to the classical ones but include a non-negative weight introduced in the right-
hand side of the inequality. The use of weights is sometimes necessary for certain probability
distributions that do not satisfy a classical Poincaré inequality (e.g., the Cauchy distribution) and
provides an additional degree of freedom to enhance the precision of the upper bounds.

A first work on the use of weights in GSA was proposed in [4]. Their weight is specifically adapted
for linear phenomena. Indeed, the underlying weighted Poincaré inequality is saturated (i.e. be-
comes an equality) for linear functions. We extend their approach by constructing a weight from
any suitable monotonic (non-linear) function and developing a numerical method for estimating
it. In particular, our algorithm can be used to generate:

• data-driven weights from estimators of the main effects (functions representing the individual
influence of each variable), when they are monotonic. We establish results on stability and
consistency for such weights.

• non-vanishing weights that, somewhat similar to that emphasized in [3], ensure the existence
of the so-called Poincaré chaos and provide as well sharp lower bounds for total Sobol indices.

We illustrate the relevance of our approach through analytic toy models and a standard application
for a simplified flood model (see Figure 1). For instance, Figure 2 displays total Sobol indices, along
with their upper and lower bounds, of the four most influential variables – Q (a truncated Gumbell
variable), Ks (a truncated normal one), Zv and Hd (triangular ones)– of the maximal overflow of
a river, whose expression is omitted here. For these variables, we compare our results with the
unweighted ones derived in [2,3], observing in the weighted cases an important improvement for
the upper bounds, as well as a notable gain for the lower bounds.

Figure 1: A dyke, a river and variables for flood modeling.
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Figure 2: Total Sobol indices and several estimations of their:
(left) upper bounds with/without a weight, (right) lower bounds with/without a weight,
associated with variables Q, Ks, Zv and Hd in the maximal overflow of a river.
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Let y = f(x) be the quantity of interest, function of some predictors x = (x1, . . . , xd), also called
features or inputs. We denote D = (1, . . . , d), D+i any subset of D that contains the label i ∈ D.
We aim at assessing how sensitive is y to the x variables. To do so, it is convenient to refer to
some high-dimensional model representation (hdmr) of f to assess the contribution of each input
variable to y.

The first hdmr we consider is the one of W. Hoeffding [1], that is,

f(x) = fH
0 +

d∑

i1=1

fH
i1 (xi1 ) +

d∑

i2>i1

fH
i1,i2(xi1 , xi2 ) + · · · + fH

1...d(x1, . . . , xd) (1)

where, fH
0 = E [f(x)] and fH

α =
∑

β⊆α(−1)|α|−|β|E [f(x)|xβ ], α ⊆ D. Hoeffding hdmr is always
unique but the summands are only orthogonal if the x-variables are independent of each other.
Otherwise, it is not obvious to infer how the input variables contribute to f(x) or to its variance
V [f(x)] given that they can contribute alone or mutually (due to correlations and interactions).
L. Shapley [5] derived some statistic φi(x) to assess the fair contribution of xi to y. By fair, it is
meant that mutual contributions are equally shared among the cooperating variables. It results
that,

f(x) = fH
0 +

d∑

i=1

φi(x) (2)

and it can be shown that φi(x) =
∑

α⊆D+i

fH
α (xα)

|α| . Besides, by denoting φ = (φ1, . . . , φd) and

C = Cov(φ) the covariance matrix of φ, one obtains the variance-based Shapley value [3] as follows,

Shi =
∑d

j=1 Ci,j .

The second hdmr we consider is the one of I.M. Sobol’ [6], that stipulates that for any u ∼ U (0, 1)
d
,

we can write,

g(u) = g0 +

d∑

i1=1

gi1(ui1) +

d∑

i2>i1

gi1,i2(ui1 , ui2) + · · · + g1...d(u1, . . . , ud) (3)

with the summands orthogonal to each other by imposing that
∫ 1

0
gα(xα)duik = 0, ∀ik ∈ α. The

hierarchical Rosenblatt transformation (RT) [4] provides the link between u and x, as follows,





ui1 = Fi1 (xi1 )
ui2 = Fi2|i1(xi2 |xi1 )
...
uid = Fid|∼id(xid |x∼id)

(4)

where (i1, . . . , id) is an arbitrary ordering of the set (1, . . . , d), Fi1 is the marginal cumulative
density function (cdf) of xi1 , Fα|β is the conditional cdf of xα on xβ with α ∩ β = ∅. Obviously,
y = f(x) = g(u), but neither the RT is unique (unless the variables be independent of each other)
and nor the Sobol’ hdmr.

We note that only g0 = fH
0 and gi1(F

−1
i1

(ui1)) = fH
i1

(xi1 ) when the inputs are not independent.
From the Sobol’ hdmr in Eq.(3) it is possible to compute the following variance-based sensitivity
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indices [2],

Sxi1
=

V [E [y|ui1 ]]

V [y]
=

V [gi1(ui1)]

V [y]
, (5)

ST ind
xid

=
E [V [y|u∼id ]]

V [y]
=

∑
α⊆D+id

V [gα(uα)]

V [y]
, (6)

Sind
xid

=
V [E [y|uid ]]

V [y]
=

V [g1...d(u1, . . . , ud)]

V [y]
, (7)

STxi1
=

E [V [y|u∼i1 ]]

V [y]
=

∑
α⊆D+i1

V [gα(uα)]

V [y]
, (8)

Sxi1
is the amount of variance explained by xi1 alone including its cooperative contribution due

to its dependence on x∼i1 while Sind
xid

is the one of xid that does not account for the mutual

contribution. STxi1
is the amount of variance explained by xi1 including all its mutual contributions

(i.e. interactions+correlations) with x∼i1 while ST ind
xid

does not take into account contributions

due to the dependences of xid on x∼id .

In my talk I will discuss the pros and the cons of the different approaches to analyze model responses
or any given dataset and I will show some examples.
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Abstract

Transport-based methods are receiving growing interest because of their ability to sample easily
from the approximated density. These methods aim at building a deterministic diffeomorphism
T , also called a transport map, which pushes forward an arbitrary reference probability density
ρref to a given target probability density π to be approximated. Typically, the transport map
T is parameterized e.g. by invertible neural networks and fitted using variational methods of
the form

min
T ∈M

D(π||T♯ ρref) (1)

with a statistical divergence D(· ||·), typically the (reversed) KL-divergence. An emerging strat-
egy for this problem is to first estimate π by π̃ and then to compute a map T which exactly
pushes forward ρref to π̃, see [2, 1]. Among the infinitely many maps T which satisfy T♯ ρref = π̃,
the Knothe–Rosenblatt (KR) map is rather simple to evaluate since it requires only computing
the cumulative distribution functions (CDFs) of the conditional marginals of π̃. In general, prob-
lem (1) is difficult to solve when π is multimodal or when it concentrates on a low-dimensional
manifold. The solution proposed in [1] consists in introducing an arbitrary sequence of bridging
densities

π(1), π(2), . . . , π(L) = π, (2)

with increasing complexity. The sequential strategy consists in building L transport maps
Q1, . . . ,QL one after the other by solving

min
Qℓ∈M

D(π(ℓ)||(Tℓ−1 ◦ Qℓ)♯ ρref), where Tℓ−1 = Q1 ◦ . . . ◦ Qℓ−1. (3)

ρref (T1)♯ ρref (T2)♯ ρref (T3)♯ ρref πQ1 Q2 Q3

Figure 1: Visualization of the approximation of a bimodal density π (right) using L = 3 inter-
mediate tempered densities estimated using SoS (4) and a Gaussian reference density ρref .

1
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For suitable statistical distances, so that D(π||T♯ρ) = D(T ♯π||ρ), these problems are equivalent to
estimating the pullback density (Tℓ−1)

♯π(ℓ) with an intermediate approximation ρ(ℓ) = (Qℓ)♯ ρref .

In our work, we contribute to this methodology as follows.

First, we employ Sum-of-Squares (SoS) densities to approximate the intermediate densities ρ(ℓ)

using α-divergences Dα(·||·). We sequentially solve the variational density approximation prob-
lem as in Equation (3) with Dα as the statistical divergence and where

ρ(ℓ)(x) =
(
Φ(x)⊤AℓΦ(x)

)
ρref(x), (4)

for some arbitrary orthonormal basis function Φ in L2(ρref). Here, the positivity of the matrix
Aℓ ⪰ 0 ensures the density ρ(ℓ) to be positive. Since the α-divergence is defined for general
unnormalized densities, it is not necessary to know the normalizing constant of π beforehand.
α-divergences Dα(·||·) with parameter α ∈ R include the Hellinger distance and KL-divergence,
which have been used in previous works. The proposed SoS densities permit to efficiently
normalize the estimated unnormalized density and to compute the KR map Qℓ such that
(Qℓ)♯ ρref = ρ(ℓ). This combined use of α-divergence for performing SoS density estimation
results in a convex optimization problems which can be efficiently solved using off-the-shelf
toolboxes.

Second, we extend the methodology to the scenario where only samples X(1), . . . ,X(N) from π
are available, as opposed to point-evaluations of the target density π. In this scenario, we propose
to use diffusion-based bridging densities π(ℓ)(x) where the distribution follows a time–inversed
diffusion process such as the Ornstein-Uhlenbeck process with time parameters tℓ−1 ≤ tℓ and
tL = 0. This idea is at the root of diffusion models.

Third, we present a novel convergence analysis using the geometric properties of α-divergences.
This analysis unifies and extends previous analyses proposed in [3, 1] and, more interestingly,
it guides the choice of bridging densities. In particular, we show that a smart choice of βℓ for
tempered densities or of tℓ for diffusion-based densities yield a convergence rate of O(1/L2) with
respect to the number of layer L.

Last, we give an outlook for using sequential measure transport to solve optimal transport
problems, where we mitigate the difficulty of estimating the optimal coupling by a sequence of
entropic regularized problems.

We demonstrate the capability of our proposed method in unsupervised learning, Bayesian
inverse, and optimal transport problems in moderate dimensions.

Short biography (PhD student)

I am an electrical engineer, now pursuing a PhD in applied mathematics at the Université
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Many industrial challenges involve excursion set estimation, which can be defined as identifying a
set of feasible input values for black-box models. These input values must satisfy a constraint on the
model’s output, such as remaining below a specified threshold (e.g., [1]). A widely used approach
to address this problem involves modeling the expensive black-box function as a realization of
a Gaussian Process (GP). This surrogate model is constructed through a sequential Design of
Experiments, with points selected in the design space X ⊂ Rd based on the optimization of an
acquisition criterion (see [2] for more details). The Bichon criterion [3] is a classical approach to
excursion set estimation that offers a balanced trade-off between exploring the design space and
exploiting known regions around the boundary of the excursion set.

In this work, we focus on the pre-calibration of a numerical model for wind turbines. The simulator,
treated as a black-box model, takes system parameters (such as stiffness coefficients of various
materials) as inputs and returns vibration frequencies and deformation eigenmodes as outputs in
response to wind loads. The inputs are denoted by Θ, and the outputs by λi(Θ) for frequencies
and Modi(Θ) for modes, where i ∈ 1, . . . , p, and p is the number of modes.

Our goal is to estimate the set of feasible input parameters that ensure the simulator’s outputs
match the experimentally observed data. More precisely, we aim to pre-calibrate the numerical
model (Figure 1) by determining a set of feasible input parameters Θ for the simulator. These
parameters must ensure that the vibration frequencies λi(Θ) and deformation modes Modi(Θ)
computed by the simulator are sufficiently close, within predefined thresholds, to the observed
frequencies λ?i and modes Mod?

i , derived from experimental data based on Operational Modal
Analysis (OMA) (e.g., [3]).

Figure 1: Schematic diagram of the wind turbine simulator.

Mathematically, we focus on black-box models with vector-valued outputs G := (G1, . . . , Gp). The
partial excursion sets are defined as follows:
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∀ i ∈ {1, . . . , p}, Γ?
i := {x ∈ X, Gi(x) ≤ Ti}. (1)

In [5], a criterion is proposed for estimating the intersection of partial excursion sets. In the
context of our pre-calibration problem, knowing the input values that are feasible for all output
components is insufficient. Therefore, this work aims to estimate the partial excursion sets for each
output component simultaneously. This allows us to determine, for any given point in the design
space, which output component exceeds its respective threshold.

We propose two natural extensions of the Bichon criterion: (1) Alternating Scal, which alternates
optimization between components, and (2) Pareto Scal, which leverages Pareto solutions from the
bi-objective optimization of the Bichon criteria. These two approaches use separate GP models for
each output component. We also introduce a vector extension (Vect) of the Bichon criterion, based
on minimizing the distances between each component of the GP and its respective threshold. This
extension relies on a multi-output GP model that incorporates correlations between outputs (see
[6]) and requires the computation of orthant probabilities in multivariate normal distributions.

The methodologies introduced above are compared across several analytical examples, considering
2 and 4 input components, and 2 output components. Subsequently, these methodologies are
applied to the pre-calibration stage of the wind turbine simulation, exploring two different problem
formulations based on two dissimilarity measures. The first focuses on the two primary deformation
modes, while the second considers all deformation modes and all vibration frequencies.

Our results on both analytical examples and the wind turbine simulator pre-calibration demon-
strate the effectiveness of our proposed strategies for estimating partial excursion sets. However,
limitations associated with the covariance structure of the multi-output GP model suggest areas
for future refinement.
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Abstract

In Bayesian statistics, the choice of the prior distribution can have an important influence on the
posterior and the parameter estimation. This is especially true if few data samples are available
and if the prior is quite informative. The subjectivity intrinsic to the choice of the prior should
be prohibited in cases with real safety and auditability issues, this is why we wish to define the
prior by a “objective” criterion.

We utilize the reference prior theory formalized in [1], and extended, among others, in [4] and [5],
which defines priors that maximize the mutual information ID(· |N) with D being a divergence
and N is the number of data samples. The mutual information can be interpreted as the
difference between the prior and the posterior. Hence, these priors maximize the importance of
the information provided by the data :

π∗ ∈ argmax
π prior

ID(π |N).

However, computing reference priors is a difficult task in general. We develop in this work
a flexible algorithm based on variational inference which computes approximations of reference
priors from a set of parametric distributions πλ on the variable of interest θ. Using the approach
of [2] and [3], we parameterize the prior by a neural network g with parameters λ and a simple
latent variable ε :

θ ∼ πλ ⇐⇒ θ = g(λ, ε) and ε ∼ Pε.

The algorithm is not limited to the uni-dimensional case θ ∈ R and is compatible with a larger
class of dissimilarity measures, namely α-divergences [4] and not only with the Kullback-Leibler
divergence.

We also propose a simple method to recover a relevant approximation of the parametric posterior
distribution πλ(θ |X) using Markov Chain Monte Carlo methods even if the density function of
πλ is not known in general.

We apply the algorithm on several statistical models of increasing complexity. We show the
usefulness of this approach by recovering the Jeffreys prior, which is the asymptotic reference
prior for the considered divergences. The performance of the algorithm is evaluated on the

1
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prior distributions as well as the posterior distributions, jointly using variational inference and
MCMC sampling. Finally, we also show that our algorithm can be used for related problems,
such as the approximation of reference priors under moment constraints as theorized in [5].

Our results leave us confident that our algorithm can be transposed to various statistical infer-
ence problems to produce robust Bayesian estimates.
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In a series of recent papers [1, 2] we have offered global sensitivity analysis (GSA) [3] as the solution
for the recently manifested problem of analytic variability in applied statistical and econometric
work, commonly associated with the so-called “Garden of Forking Paths” [4, 5] that analysts engage
with when setting up an investigation. Our title refers to the expression “A universe of uncertainty
hiding in plain sight” [6] that has been used to comment on the results of multi-analysis studies
displaying unexpected variability. In a sense, in our SAMO community of practitioners engaged
in sensitivity analysis, this uncertainty was indeed always in plain sight – and was chased with
an array of techniques going from efficient design of numerical experiments to setting-specific
sensitivity analysis practices. Considering these practice as self-evident may constitute a sort of
SAMO-specific bias, especially given the complex and nuanced relation that quantification sciences
have with uncertainty across different disciplines, especially at the interfaces between science,
society and policy [7]. Thus, we look at the issue of “analytic flexibility” discovered in this new
context and reconnect it to how GSA has been taken up in several disciplines to test the quality
of a quantification. In particular we recall early econometricians’ works [8, 9] suggesting global
sensitivity analysis (GSA) to test the robustness of a quantitative inference, and comment on the
recommendations’ slow take up [10] in both econometrics and other disciplines. We show how today
a mature [11] GSA approach permits analysts to properly chart gardens of forking paths before
venturing into one, or to make sense of a multi-analyst experiment after it has been done. GSA
allows the “universe of uncertainty” hidden in multi-analyst studies to be unveiled (uncertainty
quantification) and characterised (sensitivity analysis proper), especially in relation to pattern of
strong dependencies of the inference upon high order interaction terms that appear to characterise
the experimental settings of multi-analyst studies [12]. We illustrate our treatment of a a recent
multi-analyst study from Breznau and co-workers [13], that we extend here to a different policy
setting. We call our application of GSA to the garden of forking path a “modelling of the modelling
process” [14, 15] (MOMP), detailing the differences between this and a more recent “multiverse
analysis” [16]. We trace a path from global sensitivity analysis – often concerned with mostly
parametric uncertainty – t0 MOMP – where the modelling process is opened up to investigation –
to sensitivity auditing [17] where the policy dimensions of an analysis are questioned. We conclude
offering a programming environment for these studies.
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Global sensitivity analysis (GSA) is undoubtedly a valuable exercise to understand the behavior
of a computational model and to devise an effective intervention. Moreover, policies and decisions
that were based on a limited comprehension of uncertainty often turned out to be disastrous (5; 9;
1; 10). However, many factors contribute to the near universal non-take-up of GSA, including
thematic complexity, implementation challenges, and computational costs (8). Furthermore, GSA
lacks a visualization convention, which leads to the situation, where a majority of studies employing
GSA compute the strength of the effects of input variables, but fail to examine their shape (2),
which often can be critical for decision-making (3).

A hybrid sensitivity-uncertainty approach Sim-
ulation Decomposition (SimDec) was created
to tackle the above challenges. At its core,
it has an efficient computation of variance-
based sensitivity indices (2), which further in-
forms an intelligent visualization that tran-
scribes multidimensional relationships onto a
two-dimensional graph (3), all implemented in
open-source packages and complemented by
a no-code web dashboard freely accessible at
https://simdec.io (6). SimDec as a method
has been shown to provide added insights for
the wide range of models from different fields
(business, engineering, environment) and for-
mulated in a variety of mathematical frame-
works (4).

This conference presentation introduces the
latest development in the SimDec dashboard:
the two-output graphs. Its usefulness is demon-
strated on the selected cases from operations research. The two-output graph consists of a scatter-
plot constructed for two arbitrary model outputs selected by the user, and the two corresponding
histograms that show the marginal distributions of the two outputs. Further, the SimDec procedure
is used to identify the most influential inputs for the first output and perform the decomposition
by these inputs applied to the entire graph set: the scatterplot and the histograms become corre-
spondingly color-coded.

The figure demonstrates the results of an optimization model for a heat exchanger of a nuclear
district heating reactor (Saari et al.), in particular, the relationship between the two optimization
outcomes, levelized cost of heat (LCOH on Y-axis) and the mechanical design characteristic (Ltb
on X-axis), and their dependency on the two most influential input variables.
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The optimization favors certain values of Ltb creating peaks in its distribution. LCOH slightly
grows with larger Ltb. The inputs influence the mechanical design considerably, but not the LCOH,
which is only slightly affected by the inputs.

Through the two-output graph on SimDec dashboard, the user acquires visual access to the multi-
variate input-output behavior of a model, supplied in an intuitive and interactive graphical format.
The entire complexity of the GSA as a topic therefore remains behind the scenes, while being cru-
cial in the process of creating meaningful graphics. Consequently, we believe that the dashboard
has the potential to contribute in democratizing GSA, making its valuable functionality accessible
for modelers even with limited mathematical training.
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Reliability is an essential criterion for measuring the quality of many engineering structures. A
highly reliable structure will have a low probability of failing and causing catastrophic results. To
design highly reliable structures more efficiently, one must understand the influence that different
uncertain factors have on failure probability. This is known as reliability sensitivity analysis, typi-
cally achieved via so-called Reliability Sensitivity Indices (RSIs). Traditional reliability sensitivity
analysis uses partial derivatives of failure probability with respect to the distributional parameters
of uncertain input variables, resulting in local RSIs corresponding to nominal parameter values. On
the contrary, global reliability sensitivity analysis measures the average effect of uncertain factors
on failure probability, averaged across their entire distribution.

The global RSI based on Safety/failure Classification of model output (StarComp) can effectively
measure the average effects of uncertain model inputs on the failure of engineering structures.
The StarComp RSI is defined through the difference between a specified input variable’s failure-
conditional Probability Density Function (PDF) and its unconditional PDF. These different PDFs
are defined by classifying model outputs (and corresponding input variable sets) according to
whether they indicate a failure state or not, i.e., whether the so-called limit state function is
negative or positive. As StarComp unveils these failure-conditional PDFs, it provides insights into
both the importance of input variables for reliability and the likelihood of failure associated with
specific input values.

To estimate the StarComp RSI, the first step is to assess the input variables’ failure-conditional
PDF. An intuitive approach to achieve this task is crude Monte Carlo simulation (via a naive
rejection sampling based on ”fail” versus ”safe”). However, such a crude Monte Carlo is not com-
putationally efficient, especially for problems with small failure probabilities. From the perspective
of Bayes’ theorem, the failure-conditional PDF can also be considered as a posterior PDF, which
can be simulated directly with widely-used Markov Chain Monte Carlo (MCMC) methods. How-
ever, due to the binary property of the failure indicator function (a.k.a. likelihood in the Bayesian
setting), locating an initial sample in the failure domain is an essential step.

We propose a two-stage MCMC simulation method to simulate the failure-conditional PDF effi-
ciently and then estimate the StarComp RSI. Its general idea is to find an initial failure sample in
the first stage with a modified MCMC. The second stage runs a straightforward MCMC, starting
from the initial failure sample, to explore the failure-conditional PDF. For problems with multiple
failure domains, multiple random chains are simulated independently in the first stage to obtain
multiple failure samples in different failure domains. Then, starting with each failure sample, the
second stage runs multiple independent Markov chains to sample from the failure-conditional PDF
across different failure domains. A set of weights is also constructed for the failure samples from
different failure domains to estimate the failure-conditional PDF correctly.
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The growing complexity of modern power systems calls for sophisticated protection functions in
order to ensure the correct operation as well as the reliability, quality and security of supply.
Testing the protection functions implemented in protection equipment/systems is, hence, a vital
activity for ultimately preventing the potentially disruptive consequences of protection failures.

In general, any testing activity requires three main components:

1. What to test, i.e., the Device Under Test (DUT), whose ability to operate based on man-
ufacturers’ specification is tested under realizable power system conditions.

2. Where to test, i.e., the platform over which to conduct the tests, which is usually based
on a real-time hardware-in-the-loop simulation test set-up to investigate the DUT behavior
under close-to-operation conditions.

3. How to test, i.e., the methodology defining which and how many tests to conduct in each
experiment, by deliberately varying different factors potentially having an impact on the
system response.

In power system protection testing, while the first two components are well established, the testing
methodologies are still less mature and quite fragmented, and are thus the focus of our work. Har-
monization efforts have been produced by national and international standards, such as the IEC
60255-121:2014 standard [1], which was issued with the intent to address the lack of uniformity
among testing methodologies, prevent misunderstandings among stakeholders, and produce a uni-
form procedure to evaluate and compare performance claims from different manufacturers. The
testing methodology recommended by the IEC 60255-121:2014 standard [1] is implicitly based on a
(replicated) full factorial design, which may not be compatible with the maximum number of tests
that the operator can afford in each experiment. For example, the testing activity performed in
[2] based on such full factorial design consisted of almost 100,000 tests; as only 5 tests per minute
were possible, this translated into about 40 days of tests.

Power system operators often work in resource-saving contexts, and, not rarely, time/money con-
siderations are adopted to justify the “arbitrary” or “convenient” selection of which and how many
tests to perform. Such common practice can be overcome by the statistical Design Of Experiments
(stat-DOE), which combines the strength of the classical DOE with the power of the statistical
approach to aid in both properly laying out a resource-saving experimental plan and conducting
robust statistical analysis of the data.

The stat-DOE was an integral part of the smart grid interoperability testing methodology proposed
in [3]. The relevance of the stat-DOE was shown in [4], which applied the methodology of [3] for
testing the interoperability of a metering infrastructure. However, in [4], a full factorial design was
employed, which quickly undergoes the curse of dimensionality as the number of factors grows.

In [5], it was proposed to integrate the stat-DOE in the power system protection testing especially
in resource-saving contexts. In particular, it was practically demonstrated how the stat-DOE can
aid in the optimal selection of the tests and in the systematic investigation of the effect of different
factors, it was proven the superiority of modern designs over classical designs (such as full and
fractional factorial), and replicable guidelines were elaborated for the application of the stat-DOE
in the performance testing of power system protection functions.

Leveraging on [5], we go one step further by showing how the stat-DOE can be employed to test
the performance of different DUTs coming from different manufacturers. In our work, the DUTs
are physical relays where the distance protection function is implemented, the latter being the
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power system protection function most commonly adopted in transmission systems. The distance
protection function, which is subject of the testing activity in our work, estimates the location of
the fault on the transmission line based on the DUT internal fault location algorithm and using
current and voltage measurements coming from the field.

Following the recommendations of the IEC 60255-121:2014 standard [1], various factors potentially
affecting the DUT performance are considered, such as fault resistance, fault location, fault type
and fault inception angle. Special attention is placed on the type of design used for the optimal
selection of the tests to conduct, owing to the well-known challenges of time/money limitations
often affecting the testing activity. The response measured to quantify the distance protection
performance is the DUT operate time (i.e., the interval between the time at which the fault
happens and the time at which the relay sends the trip signal). As the interest of the operator
is, often, whether the DUT operate time exceeds a pre-defined threshold, the test results are also
analyzed in terms of pass/fail outcomes.

By applying the stat-DOE workflow, we show how building a surrogate model of the fault location
algorithm can be of practical use to validate the performance claims of different DUTs and hence
detect potential internal inconsistencies in a cheap yet robust manner before the field implemen-
tation. Also, we demonstrate how the stat-DOE can effectively support the definition of pass/fail
criteria based on specific requirements of the transmission system operators.

Although in the first place the purpose of the testing activity is usually not directly related to
Sensitivity Analysis (SA), the operator may be interested in identifying which factors mainly drive
the degradation of the DUT performance in order to support the definition of further experiments.
By interpreting the test results in terms of pass/fail outcomes, we recast the problem into the
“factor mapping” SA setting, and we recommend the operator to employ a simple statistical test for
identifying the factors to which the DUT performance is most sensitive. If additional experiments
are needed, this may instruct the operator e.g., to sample the most important factor(s) at more
levels, and/or to neglect those which turned to have minimal impact on the DUT performance.

Overall, the attained results allow us to claim that integrating the stat-DOE into the testing activity
of power system protection can overcome the limitations of the existing testing methodologies, and
that, at a broader level, it can represent a common and standardized basis for ensuring replicability,
robustness and objectivity of the testing activity.
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Abstract

As part of the reliability and risk assessment of complex and critical power generation systems
(e.g., nuclear and hydropower plants), the operator must perform uncertainty analyses in order
to provide safety margins to the safety and regulatory authorities. However, for a number of
historical and methodological reasons, common engineering practices for safety and reliability
assessment can vary between applications. For example, on the one hand, the study of accident
scenarios in nuclear safety [3] is often based on the estimation of penalised quantile values
provided by the Wilks’ approach [8]. On the other hand, reliability analyses carried out in the
hydropower sector (e.g., penstock reliability) rely on the estimation of (conditional) rare event
probabilities to be compared with safety thresholds [1]. Finally, in other areas such as financial
risk modelling, quantiles and superquantiles (also known as “value-at-risk” and “conditional
value-at-risk”) are the quantities of interest. Thus, in practice, a panel of risk measures can be
defined and used [7]. More specifically, a set of four risk measures can be considered: quantiles,
superquantiles, failure probabilities and buffered failure probabilities. These four risk measures
have several theoretical properties that have been intensively studied [4, 5, 2]. However, the
theoretical properties of the statistical estimators as well as the practical interest of these risk
measures is still an area of research.

The aim of this paper is twofold. In a first step, an analysis of the theoretical properties and the
theoretical links between these four risk measures is discussed in the light of practical desirability
criteria. Furthermore, in the context of naive Monte Carlo estimation, asymptotic statistical
properties of the estimators are analysed and illustrated by means of elementary toy cases. In
a second step, a theoretical formulation of a risk analysis decision problem is proposed, in the
spirit of [6], but extended to the panel of four risk measures discussed earlier. In addition,
the impact of the different sources of uncertainty (e.g., on the input distribution) is taken into
account. The limits of this approach will be explored, in particular with respect to the curse of
dimension, or in a non-asymptotic framework where the available samples are of finite size.

Short biography (PhD student)

Marie Temple-Boyer graduated from École Nationale des Ponts et Chaussées in June 2023 and
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Abstract

Modern computational models for scientific and engineering applications typically involve a
large number of input parameters and are expensive-to-evaluate both in time and resources.
Replacing the model with an accurate and fast-to-evaluate surrogate (or approximation) offers
a viable workaround in many applications. Approximating such high-dimensional functions with
classical approximation tools such as polynomials, wavelets or neural networks is, however, a
difficult task. This is even aggravated in the small sample regime where one only has access to
a little number of model evaluations. One way to address this challenge is to reduce the input
dimension beforehand. This consists in approximating the model x 7→ u(x) as the composition
of two functions: a feature map x 7→ z = g(x) which extracts the relevant features of the
input variables, and a profile function z 7→ f(z) which regresses the model output on the
features. The feature map can be built by minimizing an upper bound of the reconstruction
error minf E[(u(X) − f ◦ g(X))2] obtained with Poincaré-type inequalities. When the feature
map is linear this strategy reduces to Active Subspace [4, 2]. The case of nonlinear feature
maps has been studied in [1] for polynomial feature maps and in [3, 5] for diffeomorphism-based
feature maps. The bound derived from Poincaré inequality is proportional to the L2-norm of
model gradients, therefore, this strategy works well for slowly varing functions for which the
bound is tight. For oscillatory model with large gradient norms, however, the bound reveals too
loose to build a meaningfull feature map and the method fails.

In this talk we demonstrate that working with a mollified version of the model (u⋆ρσ) is a good
strategy to circumvent this issue as it allows to obtain sharper Poincaré error bounds and to
reduce the dimension efficiently using gradient-based techniques. Here ρσ is the gaussian kernel
with 0 mean and σ2Id covariance, ⋆ is the convolution operator and we call σ the mollifying
parameter. We demonstrate that the reconstruction error when using a mollified version of
the model can be bounded by the sum of two terms: one that vanishes when the mollifying
parameter goes to zero and one that is proportional to the Poincaré error bound of the mollified
model. This bound shows the trade-off between mollification and dimension reduction: for
strongly mollified models the first term is large and the second one quite small and the other way
around when the model is less mollified. Based on this result, we propose an iterative algorithm
for dimension reduction. More precisely, we introduce a sequence σ1 > σ2 > . . . > σp ≥ 0 of
decreasing mollifying parameters. Then at the first iteration we approximate a strongly mollified
version of the model u∗

1 = u ⋆ ρσ1 with a feature map g1 and a profile function f1. At the next
interation the algorithm approximates a slightly less mollified version of the residual model
u∗
2 = (u− f1 ◦ g1) ⋆ ρσ2

with a feature map g2 and a profile function f2. This proccess iterates
p times and at the end the original model u is approximated by

∑
1≤i≤p fi ◦ gi.

Let us illustrate on some example the impact of the mollification step on the accuracy of Poincaré
error bound. We consider the analytical toy model u(x) =

∑d
i=1 aisin(ωixi), where ai, ωi, xi are

1
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respectivelly the ith components of vectors a ∈ Rd, ω ∈ Rd, x ∈ Rd. We aim at approximating u
by f ◦ g with g a projector onto {e1, ..., ed} the canonical basis of Rd. Here g is a linear feature
map and g = U⊤ ∑

i∈τ eie
⊤
i where τ ⊂ {1, . . . , d}, #τ = m and U = [ei]i∈τ ∈ Rd×m. In this

framework, and for X ∼ N (0, Id), we compare the minimal reconstruction error for uσ = u ∗ ρσ
with the one obtained by minimizing Poincaré error bound. We perform the comparison for
ai = 1, i = 1, ..., d and for different values of σ. In this situation the reconstruction error is equal
to 1

2

∑
i∈−τ e

−ω2
i σ

2

(1− e−2ω2
i ) and the Poincaré error bound is equal to 1

2

∑
i∈−τ ω

2
i e

−ω2
i σ

2

(1 +

e−2ω2
i ), where −τ is the complementary set of τ in {1, . . . , d}. We can compare the 2 functions

eerr(ω) = 1
2e

−ω2σ2

(1 − e−2ω2

) and ebound(ω) = 1
2ω

2e−ω2σ2

(1 + e−2ω2

) to understand how the
error and the bound behave for different values of the mollifying parameter σ. Figure 1 clearly
shows that the reconstruction error and the error bound become closer together as the value of
σ grows.

(a) σ = 0 (b) σ = 0.5 (c) σ = 1

Figure 1: Plots of eerr and ebound according to ω for different values of σ
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Abstract

In this work we focus on the construction of prediction intervals for machine learning models.
Numerical simulation is widely used to predict the behavior of industrial pieces in order to iden-
tify designs that meet the desired performances. Finding the appropriate design (in terms of
geometry and material, for instance) typically involves solving an optimization problem, requir-
ing sometimes several hundreds calls to the simulation code that predicts the underlying physics.
In most industrial applications, each call to the simulation code can take several hours to prop-
erly model the physics. For this reason, direct optimization is most of the time intractable. To
overcome this issue, a common practice consists in building a surrogate model for the simulation
code. Popular surrogate models include Gaussian processes, random forests, or more recently,
neural networks for their high flexibility. While these machine learning models have been proven
effective across several industries, there is a lack of rigorous uncertainty quantification for the
predictions made by such models.

Recently, there has been a growing interest in conformal prediction methods which provide
a systematic way to build prediction intervals with coverage guarantees, see [7, 1]. Conformal
prediction is a distribution-free and model agnostic framework that provides prediction intervals
with marginal coverage guarantees and also, for some variants, training-conditional coverage
guarantees at the expense of additional assumptions. Nevertheless, it still suffers from a few
shortcomings such as the incompatibility with deterministic design of experiments due to the
exchangeability assumption, or its tendency to generate rather constant intervals. Although
there has been much effort into developing adaptive conformal prediction bands [3, 6], it still
remains an active research topic.

Here, we propose to investigate the kernel framework recently proposed by [4] and [2] that rely
on semi-definite programming. The methodology consists in learning the conditional variance of
the output given the input features. This function is learned in a complex and high dimensional
space using a positive definite kernel and the representer theorem for non-negative functions [5].
The generated prediction intervals also enjoy marginal and training-conditional coverage guar-
antees without relying on the exchangeability assumption, which appears promising for handling
deterministic design of experiments often used in numerical simulations. As an illustration, split
conformal prediction is compared to the aforementioned kernel method in Figure 1.

Throughout this work, it has been found that the performance of the kernel methods [4, 2] is
promising and outperforms conformal prediction variants on several synthetic regression prob-
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(a) Split conformal.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

3

2

1

0

1

2

3

4

5

y

(b) Our kernel model.

Figure 1: Comparison between split conformal prediction and our kernel model. In red the
true mean function, in blue the Gaussian process estimate and in orange the respective 90%
prediction bands.

lems, especially in terms of adaptivity. We also show that the optimization problems defined
in [4] and [2] can be casted into a single framework, and that the computational times can be
greatly reduced by relying on the results presented in [5]. Finally, we also propose a completely
novel methodology for tuning the lengthscales involved in the kernel methods, which was highly
overlooked in [4, 2].
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In the context of variance-based sensitivity analysis of functional outputs, a common goal is to
compute sensitivity maps (SM), i.e Sobol’ indices at each output dimension (e.g. time step for time
series, or pixels for spatial outputs) [1, 2, 3]. In specific settings, some works have shown that the
computation of Sobol’ SM can be speeded up by using basis decomposition employed for dimension
reduction (e.g. Principal Component Analysis, B-splines, wavelet, among others). However, how
to efficiently compute such SM in a general setting has not received too much attention in the GSA
literature.

In this work, we propose fast computations of Sobol’ SM, with a focus on statistical estimation of
these indices, using a general basis decomposition of output data yℓ(X), where (·)ℓ represents the
index of each output dimension. The functional basis decomposition of dimension m is given by a
linear combination of the basis coefficients vector c and the basis components vector vℓ:

yℓ(X) =

m∑

i=1

ci(X)vi,ℓ

We obtain closed-form expression of SM in function of the matrix-valued Sobol’ index of the vector
of basis coefficients, for all I ⊆ {1, . . . , d}, where d is the number of input variables. Then, we write

similar basis-derived formulas for the pick-freeze estimator of Sobol’ SM Ŝc
I

pf
(yℓ(X)) in function

of the normalized matrix-valued pick-freeze estimator of the vector of basis coefficients, as follows:

Ŝc
I

pf
(yℓ(X)) =

v⊤.,ℓ D̂
c
I

pf
(c(X)) v.,ℓ

v⊤.,ℓ Ĉov
pf
(c(X)) v.,ℓ

The relative cost in terms of mathematical operations between the basis-derived [2, 3] and pixel-
wise [1] approaches scales as the ratio between the number of basis components m and the output
dimensions L. When dimension reduction is possible, this ratio may be very small and the gain in
computational time allows to calculate both SM and their associated bootstrap confidence bounds
in a reasonable time.

As an application, we study the contribution of this work to a case in fluid mechanics: the idealized
and gradual dam-break of a non-Newtonian fluid [4]. It consists of a known volume of material
inside a reservoir delimited by the walls and a gate, which is lifted with a finite velocity and the
material flows downstream a horizontal plane or channel (Fig. 1). By computing the SM, we aim
to evaluate the influence of input variables over a chosen quantity of interest: the position of the
wavefront over time xf (t).
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Figure 1: Schematics of the case study (left) and time series of Sobol’ indices with associated
confidence bounds in shaded colors (right).

The input variables of the model are the initial fluid height H, lifting velocity of the gate VL,
fluid’s density ρ and rheological properties (yield stress τc and plastic viscosity µB). All input
variables were considered as uniformly distributed. By using Latin-Hypercube Sampling (LHS),
226 scenarios were generated and simulated by the finite-volume fluid dynamics solver ANSYS
Fluent. Then, Principal Component Analysis was applied as functional basis to reduce dimension
(m = 10, accounting for 99.9% of the variance) and the basis coefficients were metamodelled using
Gaussian Process Regression for fast prediction. To estimate the SM, 5000 pick-freeze samples
were used with 20 bootstrap repetitions. The results in Fig. 1 show that the influence of input
variables over the wavefront position vary significantly along time, except for ρ, highlighting the
time-dependent characteristics of the flow. The small difference between 1st order and total indices
indicates that interactions are small compared to the main effects. Overall, the basis-derived pick-
freeze method showed to be capable of obtaining SMs with an acceptable accuracy, while performing
less operations and allowing the bootstrapping technique in a reasonable computational time.
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Total indices are global sensitivity indicators subject of intensive investigation in the statistical,
machine learning as well as simulation literature. They aim to capture the strength of dependence
between a quantity of interest/target and covariates/features. In general, a total index is the
fraction of the variance of Y that is left unexplained when all features are fixed but Xi.

Applying total indices in a dependent-input setting generally requires conditionally independent
realizations. In [6], non-Cartesian input domains are studied using a rejection technique, in [2] the
pick-and-freeze methodology is also applied in the dependent input case, with the introduction of an
additional density quotient to adjust for the disparity between the product of marginal densities
(where the pick-and-freeze sampling is formed) and the joint density (where the conditionally
independent distributions are found).

In the machine learning context, it was noted by [5] that model-X knockoffs introduced by [3] may
be used for assessing feature importance. We apply this reasoning to the sensitivity analysis con-
text, and arrive at the surprising result that pick-and-freeze algorithms can be applied unmodified
also in the dependent case when the alternative sample block is generated as knockoff.

This approach is extended to moment-invariant measures using kernel-based dissimilarity measures
[4] and optimal-transport-based measures [1] which can be applied in case of stochastic output.
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Abstract

The general aim of this work is to develop a design-of-experiments-type enrichment strategy,
combined with a multi-fidelity approach, in order to improve knowledge of the same quantity
of interest (e.g. a model output or an ecosystem indicator) from several versions of several
models. While the long-term ambition is to adapt such a tool for climate models, we will
initially develop it for the less complex context of marine biogeochemical models. These models
compute the dynamics of the planktonic trophic network from a set of equations describing
the main processes involved between the different functional groups of plankton, as well as the
prey-predator relationships that exist between them.

Figure 1: An example of a version of the Eco3M-MED-CN marine biogeochemical model.
Left: conceptual diagram of the biogeochemical processes represented; right: an Eco3M-MED-CN

output variable used in a 1DV configuration.

More specifically, we are working in a 1D Vertical (1DV) configuration with a simplified version
of the Eco3M-MED model [Baklouti et al., 2021], identified as Eco3M-MED-CN. Like the model
from which it is derived, this model has a flexible stoichiometry, and its main objective is to
study biogeochemical cycles, particularly carbon, and plankton population dynamics in the
Mediterranean. It is based on a system of 28 ordinary differential equations (one per state

1
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variable), and a set of 93 parameters. We have chosen 9 scalar quantities of interest, which
reflect different aspects of the trophic network, i.e. its state, structure or functioning.

We are developing two versions of the Eco3M-MED-CN model with the intention of integrating a
multi-fidelity approach into our methodology. The first stage of the work consisted in conducting
a sensitivity analysis on these models. In view of the large number of parameters involved, we
opted for a screening-type sensitivity analysis. The Morris method was chosen for its conceptual
simplicity and ease of implementation. It allows us to obtain a qualitative classification of
parameters relative to each quantity of interest, while maintaining a reasonable use of computing
resources for a model of this size. Sensitivity analyses were performed using 4900 simulations
for each version of the model.

These analyses highlight particularly influential or non-influential parameters on our quantities
of interest, enabling us to adjust the model’s parameter space. This work will be presented
in detail in the poster, and we will also discuss initial attempts and problems identified in
connection with the multi-fidelity approach.
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Alpes, I had the opportunity to start a thesis supervised by Eric Blayo and Elise Arnaud, within
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Abstract

This work focuses on approximating a differentiable function u : Rd → R with d ≫ 1 by a
composition of functions f ◦ g where g : Rd → Rm and f : Rm → R. The approximation error is
assessed in the L2

µ-norm where µ is some probability measure on Rd. The approach considered
is two-staged. Firstly the feature map g is selected among some prescribed functional class by
minimizing some function J involved in the upper bound of the approximation error

min
f :Rm→R

Eµ(|u− f ◦ g|2) ≤ CµJ (g), (1)

which is based on Poincaré inequalities and requires evaluations of ∇u.

Secondly the function f is built using classical regression methods. Until recently, bounds of
the form (1) were only available for linear feature maps g. This framework has been extensively
studied under the name Active Subspace, see for example [2, 4], and the solution is given
by the eigenvectors of the matrix E(∇u∇uT ) ∈ Rd. This approach is easy to implement,
computationally efficient, has robust theoretical guarantees for some classical probability laws
µ, and showed good performances in various numerical applications. However, there are many
functions u for which such an approximation with m < d is known to be not efficient.

Therefore, recent works consider non-linear feature maps in order to produce better dimension
reduction. More especially, we will focus on the work from [1, 3] in which authors leverage
Poincaré inequalities on smooth manifolds to obtain a bound of the form (1) for non-linear g.
Although there are less theoretical guarantees, their numerical experiments showed improved
performances compared with linear featuring. However, minimizing J is now much harder than
finding eigenvectors of some matrix, and can only be done using iterative descent methods.

In this work we consider feature maps as in [1], of the form g(x) = GTΦ(x) with G ∈ RK×m

and where Φ : Rd → RK , K ≥ d, is fixed. We study a new quantity, denoted L(g), which
can be expressed as the minimal singular value of some positive semi-definite matrix. We show
that for a compact set of polynomial feature maps with m = 1, for some class of probability
distributions, any minimizer g∗ of L satisfies the sub-optimality result

J (g∗) ≲ min
g

J (g)β ,

where 0 < β ≤ 1 is some constant which depends on the degree. We also extend this approach
to the case m > 1 as well as for simultaneously learning a parametrized family of functions
uy ∈ L2

µ by y ∈ Y, although the theoretical results are weaker. Finally, we provide numerical
examples to illustrate the performances of g∗, both as the feature map used in the regression
step, or as the initializer for some iterative descent algorithm for minimizing J .

1
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Véronique Maume-Deschamps
William Thevenot
Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA
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(Re)insurers are constantly looking for opportunities to develop their business, increase their in-
comes and improve their profitability. However, in every line of business, portfolio growth often
leads to increased incomes and increased risk accumulation. The company’s aim is to maximize
profitability by achieving an optimal risk/reward ratio between exposure to losses and expected
profits. Although, the assessment of individual risks is important, getting the right mix of risks is
just as crucial.

In addition, on the European market, an insurer must meet the requirements of Solvency II regu-
lations, in particular it must have an amount of own funds at least equal to the Solvency Capital
Requirement (SCR). The SCR is the capital required to ensure that the (re)insurance company
will be able to meet its obligations over the next 12 months with a probability greater than 99.5%.
Formally, it is modeled with the Value-At-Risk (V aR) at the level α = 0.995.

Other risk measures can be used to model the overall risk of a (re)insurance company, the most
widely used alternative being the Conditional Value-At-Risk (CV aR), also called Tail Value-At-
Risk (TVaR) or expected shortfall (ES) for continuous distributions. CVaR is usually preferred to
VaR because it has better properties such as sub-additivity and its coherent in the sense of Artzner
et al.[1]. It is in the company’s interest to reduce risk through diversification, in order to achieve
the best risk/return ratio.

The classic approach to portfolio optimization was introduced by Markowitz in 1952 [3]. It consists
in the maximization of the expectation under the constraint of maximum variance or, equivalently,
minimizing the variance of the portfolio, for a fixed return, this problem is called the mean-
variance optimization. Its equivalent for the conditional value-at-risk (CVaR) is the mean-CVaR
optimization.

We model the (re)insurance asset market with business lines represented by the random vector X of
asset returns, taking values in a subset RX of Rd. We assume that E(|X|) < +∞. A (re)insurance
portfolio is defined by a vector γ ∈ Rd representing the quantity held in each business line by the
(re)insurer.

Let us fix some notations, with α ∈]0, 1[:

Vα(γ) = V aRα(−γTX) = min
{
M ∈ R : P

(
−γTX ≤ M

)
≥ α

}
,

Cα(γ) = CV aRα(−γTX) = E
(
−γTX

∣∣− γTX ≥ Vα(γ)
)
.

Our original goal is to solve the following equation with a fixed α ∈]0, 1[ and constraints on the
weights and a capital requirement limit K > 0. It is quite common that L0 depends on Cα(γ).

v∗ := inf
γ∈Rd

+

E(L0(γ, Cα(γ),X))

s.t. γlow
i ≤ γi ≤ γup

i ∀i ∈ {1, .., d}
s.t. Cα(γ) ≤ K.

(1)

A new approach was introduced by R.T. Rockafellar and S. Uryasev in 2000 [4] and was later
extended by Krokhmal P., Jonas Palmquist J., Uryasev S. (2002) [2] who proposed an embedding
technique to reformulate the CVaR.
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We aim to maximize a return function or minimize a loss function of a portfolio under CVaR
constraints, because this approach is well adapted to the needs of (re)insurance companies. In [2],
it is solved using linear programming, but this resolution can be very time-consuming. In this
work, we prefer to use Sample Average Approximation (SAA), see Rubinstein and Shapiro [5].

For this formulation with explicit constraints, no convergence or convergence speed results with
the SAA method has been published as far as we know, the closest result to our work is [8]. In
this last one, the function to be minimized does not depend on the data sample.

Under convexity, continuity, integrability assumptions, we prove a.s. the convergence and find a
rate of convergence for the SAA version in the case where the function to be minimized depends
on the data sample as do the constraint. Moreover, if the CVaR appears in the function to be
minimized, we show that for the optimization, under monotonic assumption, it can be replaced by
the auxiliary function introduced in [2] and [4]. We also propose a sufficient condition to obtain
the uniqueness of the solution. These results give (re)insurers a practical solution to portfolio
optimization under market regulatory constraints, i.e. a certain level of risk.
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For decades, global sensitivity analysis (GSA) has been the method of choice for identifying the
most relevant or sensitive model parameters in nonlinear modeling [3]. This work focuses on the
Sobol indices [9], which belong to the class of the variance-related sensitivity indices. However,
despite their long successful history, the classical approach via the Sobol indices uses Monte-Carlo
(MC) sampling, typically requiring a high number of model evaluations. Such high computational
costs reduce the applicability of the classical MC-based Sobol approaches in applied scenarios,
where even individual model evaluations may require substantial computational power.

Surrogate-based techniques, such as polynomial chaos expansions (PCE), can overcome this re-
striction. Notably, the Sobol coefficients can be computed directly from expansion coefficients,
as proposed by Sudret in [10]. However, even PCE-based surrogates have some restrictions. In
particular, the classical PCE tends to suffer from Gibbs’ phenomenon, which leads to oscillations
in the surrogate caused by discontinuities in the model response.

The arbitrary multi-resolution polynomial chaos (aMR-PC) combines two ideas: the data-driven
Ansatz of the arbitrary PCE proposed in [8] and the multi-resolution/multi-element based local-
ization initially introduced in the context of uncertainty quantification by Le Mâıtre et al. in [6].
This localization inherently reduces Gibbs phenomena and can achieve higher accuracy without
increasing the maximal polynomial degree.

In this work, we extend the concept of the surrogate-based GSA to aMR-PC-based surrogates as
proposed in [5]. For demonstration, we apply the extended techniques to a problem taken from the
context of porous media. Specifically, we consider fluid flow through a coupled system consisting of
a free-flow region and a porous-medium domain. Here, the Stokes equation describes fluid flow in
the free-flow domain, and Darcy’s law holds in the porous-medium region e.g. [2, 7]. The coupling
conditions, ensure the conservation of mass across the interface, the balance of normal forces and
use the Beavers–Joseph condition [1] for tangential velocity. The latter contain the parameter
characterising pore-space morphology near the fluid-porous interface. Developing and extending
such complex models, particularly in the context of model calibration, requires powerful strategies
for assessing the relevance of model parameters, for which GSA is an established tool.

In this talk, we demonstrate the application of the aMR-PC-based GSA for the Stokes–Darcy
problem, analyzing the sensitivity of four uncertain parameters: the exact location of the interface,
the permeability, the Beavers–Joseph slip coefficient, and an geometric uncertainty in the outflow
boundary. Furthermore, we use this modeling example to compare aMR-PC and classical PCE-
based GSA.
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Sensitivity analysis (SA) has become an essential part of the engineer’s toolbox to analyze the vari-
ability of the output of a model and explain it from the different sources of uncertainty. However,
the cost of simulators can be an obstacle to their use as SA techniques often implies to estimate
statistics, e.g., expectation, variance or sensitivity indices, using Monte Carlo (MC) sampling. An
alternative consists of replacing the simulator by a surrogate model but when the input dimension
increases, the curse of dimensionality degrades its quality and challenges its use. The same concern
arises when using a lower fidelity model. Given these limitations, we propose to combine the best of
both worlds: MC techniques to guarantee unbiasedness and multifidelity models and/or surrogate
models to reduce the variance of the estimators.

Given a collection of numerical simulators with increasing accuracy and computational cost, [1]
proposed the multilevel Monte Carlo (MLMC) technique to estimate the expectation unbiasedly.
Then, MLMC methods have been extended to other statistics with algorithms designed to achieve a
given precision. In [2], we proposed a unified MLMC framework where the unbiased MC estimator
of the quantity of interest based on the finest level can be written as the telescoping sum of unbiased
MC estimators. We applied this framework to the estimation of the covariance term of the pick-
and-freeze estimator of a Sobol’ index [3] and proposed an algorithm to allocate the sampling cost
to the different fidelity models. The allocation rule is driven by the target computational cost,
which may be more appropriate for engineering studies where one looks to reach the best accuracy
under the constraint that the total simulation time is lower than a given requirement.

In [4], we proposed to combine MLMC techniques with control variates (CV) based on surrogate
models to reduce the variance of the estimator. The CV method corrects the MC estimator
with a term derived from auxiliary random variables that are highly correlated with the original
random variable and we proved that using several control variates could not increase the variance.
Based on this, we proposed to use the outputs of surrogate models as control variates, e.g., Taylor
polynomials (TP), Gaussian process (GP) regressors or polynomial chaos expansions (PCE) and
illustrated this approach on an academic use case for which the simple use of a first-order TP
can already improve the quality of the MC estimator of the expectation. We also proposed three
extensions of this surrogate-based CV strategy to the multilevel framework. MLCV is presented
as an extension of CV where the correction terms devised from surrogate models for simulators
of different levels add up. MLMC-CV improves the MLMC estimator by using a CV based on a
surrogate of the correction term at each level. Further variance reduction is achieved by using the
surrogate-based CVs of all the levels in the MLMC-MLCV strategy. Although these techniques
can be applied to an arbitrary statistic, we provided specific expressions for the expectation and
the variance. In the case of the expectation, we also compared them in terms of accuracy and
computational cost, depending on whether the construction of the surrogates, and the associated
computational cost, precede the evaluation of the estimator.

Building on [4], we extend such estimators to sensitivity indices, e.g., input-output correlation
coefficients, Sobol’ indices, derivative global sensitivity measures (DGSM) [5] and Hilbert-Schmidt
Independence Criterion (HSIC) [6], as well as a generic framework for a wide family of estimators
of sensitivity indices and a technique for the joint estimation of several sensitivity indices [7].
Finally, a Nastran-based mechanical use case with 50 uncertain parameters is used to assess these
surrogate-based CV estimators of sensitivity indices and demonstrate the value of these variance
reduction methods in engineering.
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For models that are even slightly expensive to evaluate, many global sensitivity methods can 
be difficult to use.  Accurate estimation of Sobol indices or delta indices can require many 
thousands to millions of model evaluations. While methods like derivative-based global 
sensitivity metrics allow the user to bound Sobol indices with very limited model runs, these 
bounds are not always small enough to be practical. Further, the practitioner is often faced 
with the “given data” scenario, where they have been given a set of model evaluations and 
they cannot further design more evaluations. Various approximations to sensitivity indices 
exist for the “given data” scenario, but accuracy can be a challenge.  

Emulator-based sensitivity analysis is a frequent solution to these problems. The 
practitioner uses a reasonable number of model evaluations (or “given data”) to train a 
statistical surrogate, or emulator, of the more expensive model of interest. Assuming 
sufficient emulator accuracy, the practitioner can then perform sensitivity analysis of the 
emulator (which is cheap to evaluate) to approximate sensitivity analysis of the model of 
interest. For example, Figure 1 shows accuracy of emulator-based delta sensitivity compared 
to the standard approach. Many classes of emulators exist, including Gaussian processes, 
basis function approaches, polynomial chaos, tree-based models, and neural networks, and 
some of these are nicely suited for use for sensitivity analysis problems. In this talk, I will 
describe in detail one emulator that I have found especially useful: Bayesian adaptive spline 
surfaces (BASS). 

 

Figure 1: Convergence of three different approaches to calculating delta sensitivity indices for a material strength model 
called PTW. The emulator approach with given data achieves greater accuracy than the given data approach of python’s 
SALib (with the same given data). 
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BASS [1-3] is a Bayesian version of Friedman’s multivariate adaptive regression 
splines (MARS). Given training data, the response is modeled as a linear combination of 
tensor product spline basis functions. The variables and interactions involved in the basis 
functions, as well as the spline knots and the number of basis functions, are learned in a fully 
Bayesian framework. This emulator works well in practice: it is relatively fast, accurate, and 
scalable [4]. In addition, the form of the basis functions simplifies many sensitivity analysis 
tasks. For example, the Sobol indices can be calculated analytically for main effects, total 
effects, and all interactions under many input distribution assumptions, including truncated 
Gaussian mixtures. Tools in R (BASS package [1]) and python (pyBASS) allow for this kind 
of analysis to be performed routinely.  

Recent work has also demonstrated that the active subspace is also available in closed 
form for BASS [5], and that, with a particular input dependence structure, Shapley effects are 
also analytical. Of course, all of these sensitivity metrics could be approximated using 
sampling for any number of emulators, but sampling-free formulations simplify many aspects 
of their use. Additionally, the error distribution of BASS can be generalized for use for robust 
regression, quantile regression, and other forms of flexible-likelihood regression, and the 
sensitivity metrics mentioned above can still be calculated analytically [6]. Figure 2 
demonstrates how sensitivity changes with quantile for a stochastic epidemiology model [6]. 

 
Figure 2: 80% posterior intervals for the Sobol indices of a stochastic SIR model as a function of response quantile. Low 
quantiles are sensitive to all inputs and their two-way interactions (not shown), but sensitivity in the large quantiles is 
dominated by x2. 
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Functional ANOVA ([1-3]) and derivative-based FANOVA ([4]) are widely used in statistical mod-

eling, uncertainty quanti�cation and sensitivity analysis (e.g., [4-10]). Such decompositions of

functions f : Rd → R have interesting properties when the input variables are independent, such

as i) the uniqueness of the decomposition, ii) Sobol' main indices (i.e., Sjs) and interaction indices

sum up to one, iii) the Shapley e�ects of inputs (i.e., Shjs from [11]) satisfy ([12])

0 ≤ Sj ≤ Shj ≤ STj ≤ 1 ,

with STj
the total index of the input Xj , j = 1, . . . , d.

For functions with non-independent input variables (i.e., X := (X1, . . . , Xd)), dependency models

(DMs) allow for extracting the dependency structures of such variables under the statistical and

probabilistic framework ([13-14]). Using (∼ j) := {1, . . . , d} \ {j} and Z∼j for a random vector of

d− 1 independent variables, a DM of X is given by

(Xj ,X∼j)
d
= (Xj , rj (Xj ,Z∼j)) ,

where Xj is at the �rst position, and Z∼j represents X∼j in that DM. Composing the function

of interest by DMs is used for de�ning the dependent sensitivity indices (DSIs) of Xjs and their

upper-bounds (i.e., dSj , dSTj
, UBj) in [13]. Such indices verify

dSj =
V [E [f(X)|Xj ]]

V [f(X)]
; 0 < dSj ≤ dSTj

≤ UBj , ∀ j ∈ {1, . . . , d} .

Despite the main DSIs are always less than the total ones, note that main indices and interactions

do not sum up to one in general, leading to some interpretability issues. It is also the case in [15].

In this abstract, we propose new DSIs that improve the above approach by accounting for the e�ects

of innovation variables Zjs, which represent Xjs in some DMs. Basically, our approach consists in

collecting necessary and su�cient equivalent representations of f(X) in one multivariate outputs,

and then applying the �rst-type generalized sensitivity indices ([7,8,10]) to assess the e�ects of Xjs.

The new main, interaction and total DSIs (i.e., DSj , DSu, DSTj ) share the following properties:

0 ≤ DSj ≤ DSTj ≤ 1;
∑

u⊆{1,...,d}
|u|>0

DSu = 1 .

Note that dSjs are DSjs when neglecting the e�ects of innovation variables. Also, when all the

inputs are independent, we have DSj = dSj = Sj and DSTj
= dSTj

= STj
. Our new approach

can cope with every model and every distribution of the inputs. For linear models evaluated at

the Gaussian random vector, Theorem 1 gives the (new) main and total DSIs of Xj .
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Theorem 1 Let f(X) = βTX with X ∼ N (0,Σ). If Σ ∈ Rd×d has full rank, then

DSj = DSTj
=

1

dV[Y ]

∑

u⊆(∼j)

(
d− 1

|u|

)−1Cov

[
Xj ,X

T
∼uβ∼u|Xu

]2

V [Xj |Xu]
.

Proof. Given a matrix L∼{u,j},∼{u,j}, such results rely on a DM of (Xu, Xj ,X∼{u,j}), that is,

Xj
d
= Σj,u (Σu,u)

−1
Xu +Σ

1/2
j|uZj

X∼{u,j}
d
= Σ∼{u,j},u (Σu,u)

−1
Xu +Σ∼{u,j},j|uΣ

−1/2
j|u Zj + L∼{u,j},∼{u,j}Z∼{u,j}

. □

In view of Theorem 1, the proposed DSIs are exactly the Shapley e�ects of Gaussian inputs using

linear models (see [11]).
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Abstract

This study builds upon the recent doctoral work [3] on model decomposition theory aims to
enhance interpretability in Machine Learning (ML) and sensitivity analysis [4]. A key result is
the generalization of the Hoeffding decomposition [1] to cases with dependent input variables,
offering new tools for fine-grained analysis of numerical and ML models. This understanding is
essential for EDF, both in improving algorithms and ensuring their regulatory compliance.

The goal of the present study is to pursue the work in [3] by specifying this generalized Hoeffd-
ing decomposition in cases where input variables are Bernoulli-distributed. Although simplistic,
this situation is motivated by various industrial applications, coming from the analysis of fault
trees to the interpretability of control systems for hydraulic valleys or other industrial assets.
These three industrial examples follow the typical scheme : Input - Model - Output, where we
observe the actions or parameters as inputs to the system (switches in on/off position, whether
a component has failed or not, etc, . . . ) and a quantity of interest as the output (a failure risk,
the amount of electricity produced, etc, . . . ).

More formally, we consider an observed random input vector X := (X1, . . . , Xd) and the
regression model Y := G(X) is also observed through the model (algorithm, function, black-
box, etc, . . . ) G. We assume that this output Y belongs to a L2 space, and we denote by σX

the sigma-algebra generated by X, and more generally by σA the sigma-algebra generated by
XA := (Xt)t∈A. With these notations, we then have: Y ∈ L2 (σX), which makes L2 (σX) be
the main functionnal space for our study. Finally, as established in [3] we make the following
two assumptions on X:

1. Non-perfect functional dependence between the components of X;

2. Non-degenerate stochastic dependence ; this assumption can be understood as a mild
constraint on a generalized covariance matrix between subspaces of L2.

1
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Under these assumptions in [2] it has be proved that:

L2 (σX) =
⊕

A∈PD

VA

where:

1. ∀A ∈ PD, VA ⊂ L2 (σA);

2. ∀A,B ∈ PD, B ⊂ A =⇒ VB ⊥ VA.

In our contribution, we explicitly construct a basis (eA)A∈PD
for the vector spaces VA when

the components of X are Bernoulli random variables is direct generalization of the Hoeffding
decomposition for Bernoulli inputs can be handled easily whatever the dimension. This novel
results allows us to directly access the generating elements of the VA spaces, which depend only
on the distribution of the input vector X, and ultimately to compute indicators on the behavior
of the model.

Future work will extend these results to cases where input variables can take three or more
discrete values, and might be considered as a first step towards the study of empirical and
regular input measures.

Short biography (PhD student)

I completed a research internship at EDF R&D, where I developed a strong interest in model
decomposition for sensitivity analysis and interpretability in machine learning. My passion for
mathematics, particularly statistics, linear and quadratic algebra, drives my research interests
and future ambitions. I am also preparing to begin a PhD at the end of 2024. This PhD
will focus on developing practical applications of the decomposition properties, motivated by
numerous industrial challenges.
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Data-driven models increasingly support decision-making. However, their complexity poses chal-
lenges for human comprehension and troubleshooting and their lack of transparency can lead to
unfair and biased decisions [2, 10]. To counteract the black box effect, explainable artificial intelli-
gence (XAI) techniques are studied. One of the most commonly studied explanations is model key
drivers, which can focus managerial attention on the most important factors during implementation
[3]. Popular post-hoc explanation methods include SHapley Additive exPlanations (SHAP) [5] or
Local Interpretable Model-agnostic Explanations (LIME) [9]. These methods focus on individual
predictions and identify the features’ contributions to a specific model decision. Recent works by
[8] and [11] highlight the strong connection between post-hoc explanations and sensitivity analysis.

In the context of XAI, counterfactual analysis provides insights into how changes to one or more
features of a given instance affect the model’s prediction [12]. The application becomes even
more important when the instance of interest is an individual looking for an explanation as to
why the decision of an algorithm was positive or negative on their behalf. Consider the following
situation. An individual, say Ms. X, is requesting a loan (or a certificate of admission) to a
financial (educational) entity but gets denied. Then, Ms. X wishes to understand what she should
change/improve about her characteristics to get admitted. Ms. X can look at a counterfactual,
as the closest individual such that if she changed one or more of her features she would also get
the loan/admission. One question that naturally emerges is which feature, if changed, would be
most effective for Ms. X to achieve the desired outcome. However, [1, 6] argue that SHAP does
not provide insight into what is important for the change in the above situation.

Alternatively, in a counterfactual framework, a commonly used index is the frequency of changes
in a given feature when moving from Ms. X to her counterfactuals. A feature is deemed important
if it is frequently modified [7]. However, counting provides a summary indication of importance.
First, we cannot appreciate the magnitude of the impact. A feature may be frequently modified,
but its impact on the change could be small. Second, we cannot appreciate the direction of impact
and whether the feature is involved in interactions with the remaining variables. Also, when
moving from Ms. X to her counterfactual, one needs to pay attention that no impossible points
are attained, to avoid model predictions affected by extrapolation errors [4]. Without considering
those aspects, explanations remain partial, leave the algorithmic decision opaque, and do not shed
light on the actions to be taken.

In this work, we propose a novel approach combining counterfactual analysis and sensitivity analysis
to explain the transition from the baseline to the counterfactual state. We apportion the change in
model predictions moving from Ms. X to her counterfactual considering each feature’s individual
and interaction contributions. A data-driven algorithm is then introduced to study the transition,
combining the search for the counterfactual and identification of the impossible point involved in
the sensitivity measure calculation. The proposed method has been applied to a synthetic example
and a series of datasets. Several novel insights were obtained from the two well-known datasets in
the machine learning literature.
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In this work, we first review the theory of global sensitivity analysis with optimal transport [1,2,5].
We also review recent applications [3,4]. We show that the associated global sensitivity measures
possess several relevant properties, such as zero-independence and max-functionality. The former
implies that the global sensitivity measure is zero if and only if the quantity of interest and the
input(feature/parameter) of concern are statistically independent. The latter implies that the
global sensitivity measure is maximal if and only if the quantity of interest is a deterministic
function of the feature of concern. We also show that if the squared Euclidean distance is used
in the cost function of the optimal transport, one obtains a decomposition which brings together
moment-independent and variance-based indices. In fact, it holds that the distance between the
distributions can be decomposed in three terms. The first term equals the individual variance-
based contribution. The second term equals the contribution to the output second order moment
and the third term accounts for contributions to any higher order moment. We call this third term
the Wasserstein Gap.

We then discuss the connection between optimal transport sensitivity and design of experiments,
introducing the notion of Wasserstein-Shapley value and discussing the properties of this notion.
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In many critical areas, large amounts of historical data are collected to monitor complex dynamic
systems, such as in nuclear industry, finance, manufacturing, etc. To ensure that these systems
function properly, a response variable (output) is observed along with environment variables (in-
puts) that may have an influence on its outcome. Explaining the latter with respect to the input
variables has then become a crucial need. Answering this question is non-trivial due to the func-
tional nature of the variables and the response [4], the temporal correlation of the inputs (for
example, the presence of a daily periodicity in the data), or memory effects (ie. the fact that the
impact of an event at a time t is observed at a time t+ τ for a non-negligible response time τ).

To this end, Sensitivity Analysis (SA) provides powerful tools to engineers and practitioners.
In particular, the framework of variance-based SA allows to link the output’s variance to the
individual (or combined) inputs variances and interpret them as contributions to the total variance.
Generalizations to functional and temporal outputs have been the subjects of many works (see, for
example, [4, 1]).

In this work, we propose a decomposition procedure for time series to enable a quantitative
variance-based SA that clarifies the role of memory effects. The methodology is a two-stage ap-
proach. First, a linear model taking into account only the instantaneous input variables and their
polynomial transforms is fitted to approach the output. Then, iteratively, for each input variable,
a distributed-lag model [5] is fitted to take into account its memory effects while ensuring, by
construction, the orthogonality to the already fitted models. This allows to decompose the total
variance of the output as the sum of the variances of the resulting components.

The proposed framework is illustrated on multiple toy examples, and, then, applied to a real-world
application case of wind power production [3, 2].

This research is supported by the Stress Test, Financial Steering and Risk management Chair
hosted by the Center of Applied Mathematics (CMAP) between Ecole Polytechnique, BNP Paribas,
and Fondation de l’Ecole Polytechnique. Wind power data is provided by the Energy4Climate
Interdisciplinary Center (E4C) of Institut Polytechnique de Paris, for which the authors would like
to express their thanks.
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Institut de Mathématiques de Marseille – France
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Med, Marseille, France, Laboratoire de Mécanique, Modélisation et Procédés Propres – France

5 Orano Mining – Orano Mining, 125 Av. de Paris, 92320 Châtillon – France
6 Orano Mining – Orano Mining, 125 Av. de Paris, 92320 Châtillon – France

Keywords: uranium logging, gamma ray spectra, Hilbert Schmidt Independence Criterion, principal

component analysis, interpretability

∗Speaker

78



 11th  International  Conference  on  Sensitivity  Analysis  of  Model  Output,  April  23-25  2025, 
 Grenoble, France 

 Novel Sensitivity Analysis Using SHAPLEY for PROMETHEUS Resilience Modelling 

 Elias , Montanari 
    Joint Research Center, Ispra ITALY 

   
 Rossana Rosati 
 Joint Research Center, Ispra ITALY 

 Dr. Thierry Mara 
    University la Reunion, FRANCE 

 Abstract: 

 In  the  context  of  increasing  global  uncertainties,  understanding  the  sensitivity  of  complex  systems  is 
 paramount  for  effective  resilience  modelling.  This  study  addresses  the  sensitivity  analysis  based  on  the 
 Shapley  value,  a  concept  derived  from  cooperative  game  theory  (Shapley,  1953),  which  provides  a 
 robust framework for evaluating the contribution of individual variables to overall model outcomes. 

 This  study  presents  the  evolution  of  a  resilience  modelling  approach  within  the  PROMETHEUS 
 project,  from  its  inception  using  classical  statistical  methods  to  the  current  application  of  advanced 
 sensitivity  analysis  techniques.  Initially,  our  model  leveraged  t-statistics  to  determine  the  significance 
 of  indicators  in  predicting  resilience  outcomes,  drawing  from  a  comprehensive  set  of  metrics  compiled 
 by  institutions  such  as  the  European  Commission's  Joint  Research  Centre  (JRC)  and  other 
 international bodies (Benczur et ali., 2023 and  European  Commission, 2020)  . 

 The  PROMETHEUS  model's  development  progressed  from  logistic  regression  to  linear  regression, 
 allowing  for  a  more  nuanced  understanding  of  the  relationships  between  various  resilience  indicators 
 and  system  outcomes  resilience.  This  transition  enabled  a  more  precise  quantification  of  each 
 indicator's impact on overall resilience measures. The following considerations apply: 

 1.  Logistic Regression (LogRes): A simple, well-established "expert decision modelling" 
 approach, represented by the formula: P(Y=1|X) = 1 / (1 + e^(-(β₀ + β₁X₁ + ... + βₙXₙ))) where 
 P(Y=1|X) is the probability of the outcome given the input variables, and βᵢ are the regression 
 coefficients. 
 LogRes has limited modulation of the outcomes and assumes independence among 
 independent variables. 

 2.  Linear Regression (LinRes=: Allowing for a more nuanced understanding of relationships 
 between various resilience indicators and system outcomes, quantified by: Y = β₀ + β₁X₁ + ... 
 + βₙXₙ + ε where Y is the outcome variable, Xᵢ are the predictor variables, βᵢ are the 
 coefficients, and ε is the error term. 
 LinRes assumes independence among independent variables while our testing has shown 
 strong multicollinearity. 

 3.  SHAPLEY Method: An advanced approach that accounts for interactions between variables 
 and provides a fair distribution of contributions among predictors. The Shapley value for 
 variable i is calculated as: φᵢ(v) = Σ[S⊆N{i}] (|S|!(n-|S|-1)! / n!) [v(S ∪ {i}) - v(S)] where N is 
 the set of all variables, S is a subset of variables, v is the characteristic function, and n is the 
 total number of variables  . 
 Shapley's advantage is to account for interactions and fair distribution across different 
 independent variables while being computationally intensive (  (  Iooss, B., & Prieur, C. 
 2019 and Linkov, I., Trump, B. D., & Keisler, J. 2018)  . 
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 With  this  abstract,  we  aim  to  introduce  the  application  of  the  Shapley  value  method,  a  concept  derived 
 from  cooperative  game  theory,  to  further  enhance  our  sensitivity  analysis.  This  novel  approach  allows 
 for  a  fair  distribution  of  contributions  among  predictors,  enabling  researchers  to  identify  key  factors 
 influencing resilience in socio-economic systems with predicted higher accuracy. 

 The  Shapley  method  addresses  limitations  of  traditional  sensitivity  analysis  techniques  by  accounting 
 for  complex  interactions  between  variables.  This  advancement  not  only  quantifies  individual 
 contributions  but  also  captures  the  intricate  interdependencies  among  variables,  leading  to  more 
 nuanced insights into system behaviour. 
 The  Shapley  value  allows  for  a  fair  distribution  of  contributions  among  predictors,  enabling 
 researchers  to  identify  key  factors  influencing  resilience  in  socio-economic  systems.  By  applying  this 
 method,  we  analyse  various  resilience  indicators  compiled  by  institutions  such  as  the  European 
 Commission's  Joint  Research  Centre  (JRC)  and  other  international  bodies.  These  indicators  serve  as 
 critical  inputs  for  our  model,  which  aims  to  predict  system  responses  under  different  scenarios  of 
 external shocks. 
 The  Shapley  approach  not  only  quantifies  individual  contributions  but  also  accounts  for  interactions 
 between  variables  and  provides  complementary  insights  into  model  (system)  behaviour  as  compared 
 with traditional variance-based sensitivity analysis (a.k.a Sobol’ indices). 
 Through  case  studies  involving  resilience  metrics  from  sectors  such  as  health,  environment,  and 
 security,  we  demonstrate  how  the  Shapley  method  enhances  predictive  accuracy  and  informs 
 policy-making. 
 This  research  contributes  to  ongoing  efforts  to  bolster  societal  resilience  against  multifaceted 
 challenges  by  providing  a  comprehensive  analytical  tool  that  integrates  empirical  data  with  theoretical 
 foundations  (European  Commission,  2020).  In  conclusion,  leveraging  the  Shapley  value  in  sensitivity 
 analysis  represents  a  significant  advancement  in  modelling  resilience.  This  approach  not  only  enriches 
 our  understanding  of  variable  interactions  but  also  supports  decision-makers  in  developing  strategies 
 that enhance system robustness in an increasingly volatile world. 
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Abstract

Inverse problems are encountered in many applications whenever one search for information
about a physical system based on measurements [7]. In this work, we are interested in estimating
a physical field thanks to a set of indirect observations d. The Bayesian inference is an attractive
approach for adressing such problems, as it provides a full estimation of the unknown parameters
distributions. In that framework, the aim is to estimate the posterior probability of the field
parameters x based on the observations

πpost(x|d) ∝ L(d|x)πprior(x), (1)

where L is the likelihood of the observations given a field and πprior the prior probability of the
field. The posterior distribution is then sampled with Markov Chain Monte–Carlo (MCMC) [4].
In order to accelerate the MCMC sampling, the forward model predictions are replaced with
surrogate models based on polynomial chaos (PC) expansions [8, 5]. In order to reduce the
input dimension of the surrogate model, a parsimonious representation of the field is introduced
by means of the Karhunen-Loève (KL) decomposition, on the assumption that the field of
interest is a particular realization of a Gaussian random field. Despite this parametrization,
several hundred inputs could be required to represent accurately a two-dimensional field. This is
expensive with regard to both the forward model surrogate training and the MCMC convergence.

Linear dimension reduction techniques have been developed to decrease the number of parame-
ters to infer. These techniques assume that most of the information provided by the likelihood
can be captured by a low-dimensional linear subspace. The input parameter space is decomposed
into two subsets

x = Axa +A⊥xi, (2)

where xa is informed by the likelihood, while xi is constrained by the prior. The posterior
distribution (1) rewrites

πpost(x|d) ∝ L(d|xa)πprior(xa)πprior(xi|xa), (3)

such that only xa is sampled during the MCMC procedure. Several methods to define the linear
transformation operator A have been developed. Cui et al. [3] build a Likelihood-Informed Sub-
space (LIS) which relies on the Hessian of the log-likelihood. The optimality of such construction

1
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has been proven in [6] for the linear case. Constantine et al. [2] adapt the Active Subspace (AS)
approach [1] to the Bayesian framework by using the misfit gradient. In both methods, the
curvature of the log-posterior density is more constrained by the log-likelihood than by the prior
along the subspace directions.

This study presents a new construction for the linear transformation operator A. The general
idea is inspired from the work of [6] which states that, in the linear case, approximating the
posterior covariance is equivalent to approximating its inverse. Instead of relying on the Hessian
of the log-likelihood, the approximation of the inverse posterior covariance involves the ratio of
the posterior and the prior variances.

For nonlinear inverse problems, we propose to generalize this variance ratio. The low-dimensional
subspace is defined as the directions in which the posterior variance is drastically reduced in
comparison to the prior variance. This method is gradient-free. We show on state-of-the-art
examples that it is sufficient for unimodal posteriors, while some adjustments are required in the
case of multimodal results. An application on a two-dimensional field inference case illustrates
the interest of the method for high-dimensional problems.
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This research is motivated by applications of global sensitivity analysis (GSA) towards mathe-
matical models of engineering problems. Such problems are common in computer experiments,
where a physical phenomenon is studied with a complex numerical code, and GSA is employed to
increase understanding of how the system works, reduce the problem’s dimensionality, and help
with calibration and verification. In this context, an important question for GSA is: ‘Which model
inputs can be fixed anywhere over its range of variability without affecting the output?’.

The most common GSA approach examines variability using the output variance. The variance-
based total sensitivity indices provide the proportion of variance explained by the input variables.
Such tools are limited to second-moment information, which presents a challenge if the underlying
distribution is highly skewed or multi-modal. Entropy-based measures overcome this limitation, as
they are applicable independent of the shape of the distribution. However, entropy-based indices
have limited application in practice, mainly due to the heavy computational burden, as knowledge
of conditional probability distributions is required.

In contrast, for a differentiable function, derivative-based methods can be more efficient. An
inequality linking variance-based GSA and derivative-based measures has been established [1, 2]
to detect un-influential input variables. A recent study [3] has proposed a derivative-based upper
bound for entropy-based sensitivity indices, which is computationally cheap to estimate.

In this paper, we present a tighter entropic upper bound by including a differential mutual informa-
tion correction that accounts for the impact of interactions between dependent input variables. We
provide proof that for a differentiable deterministic function y = g(x) : Rd → R with continuous
random inputs, there exists an upper bound for the conditional entropy-based SA indices:

E[H(Y |X∼i)] ≤ H(Xi) + li − I(Xi;X∼i) (1)

where ∼ i indicates the index ranges from 1 to d excluding i. H(Xi) is the differential entropy
of the input variable Xi and li is the expected log-derivatives li = E [ln |∂g(x)/∂xi|]. The mutual
information I(· ; ·) is a moment-independent quantification of the statistical dependence between
variables reflecting their amount of shared information. As the mutual information is nonnegative,
the new upper bound is tight when dependencies among input variables are known or suspected.
This greatly improves the screening power, as the effectiveness of the screening improves with the
tightness of the upper bound.

Another issue for the derivative-based upper bound is the lack of verification for high-dimensional
problems. The simulation of differential entropy, mutual information, and related information
theoretic quantities typically proceeds using ‘plug-in’ Monte Carlo estimators where the densities
required are approximated using nonparametric kernel density estimation techniques. However,
it is well-known that even in dimensions as low as 10, kernel density estimation is prohibitively
data-inefficient [4].

To overcome this issue, we utilize neural density estimation techniques, including recent algorith-
mic advancements such as MINE [5], KNIFE [6], and REMEDI [7], for efficient approximation
of information-theoretic quantities in high dimensions. These estimators are differentiable with
respect to the data, enabling the global sensitivity measures to be optimized for outer-loop tasks
in engineering design.

Simulation-based prototyping for engineering design problems often involves high-dimensional
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spaces of possibly correlated and dependent control variables. This paper extends the derivative-
based entropic upper bound to high-dimensional and dependent inputs, thus providing a versatile
and efficient tool for general engineering applications.
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Abstract

When dealing with prediction problems, analysts rely on variable importance measures and
global sensitivity measures to understand the predictive power of variables and uncover the
relationships in the data [10]. When the data generating process (DGP) is unknown, analysts
typically train machine learning models to use as surrogates, and derive explanations for the
patterns in the data computing the variable importance of the best performing model. The
validity of this approach is threatened by the Rashomon Effect [2], whereby multiple models
achieve similar predictive accuracy but offer different and sometimes conflicting explanations
for the underlying patterns. Indeed, the Rashomon Set [5] – the collection of all almost-optimal
prediction models – can be seen both as a challenge and an opportunity for analysts: while this
adds uncertainty to inference, it also allows for broader exploration of potential explanations.

A number of studies have succeeded in framing a procedure to compute or approximate the
Rashomon Set for some specific model classes [11, 12, 4, 9]. Few attempts, however, have been
made to explain the relationships in the data by exploiting the whole Rashomon Set [5, 4]. In
this work, we propose a novel methodological framework that leverages all the models in the
Rashomon Set to produce more reliable and consistent insights into variable importance. Our
idea is to view the Rashomon Set for a dataset as a collection of agents, each expressing its
own possibly different preference for the features, much like how different experts may offer
varying interpretations of the same data. The strength of this preference corresponds to the
importance of each variable for the prediction, quantified through an importance measure. By
transforming the importance vectors for all the models into rankings and then aggregating them,
our method allows analysts to generate a consensus ranking which reflects the preferences of
the entire Rashomon Set, offering a comprehensive view on the mechanisms in the data. We
draw upon the established literature on ranking aggregation techniques [3, 6, 8] to combine the
individual importance rankings into a unified ranking that is robust to model variability.

The proposed framework complements existing variable importance measures and provides ana-
lysts with a powerful tool to handle model multiplicity in practical applications. We validate our
methodology using both simulated data from known DGPs and real-world datasets, to demon-
strate how the framework reconciles conflicting signals from multiple models and produces an
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importance ranking of variables that is more aligned with the true DGP. We test different ag-
gregation techniques to show how the choice of the technique impacts the consensus ranking.
Furthermore, we provide theoretical results on the structure of the Rashomon Set for the specific
class of linear regression models. In particular, we clarify the connection between the coefficients
of linear models in the Rashomon Set and the permutation importance measure [1], a widely
used measure in machine learning, exploring its relation to total indices [7].
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When models are trained on data alone, they may not accurately reflect a modeller’s view, an
expert’s judgement, or user inputs. Moreover, on many occasions the experts disagree and thus
their models, potentially trained on different datasets, need to be combined. To amalgamate the
conflicting nature of expert’s views, we propose a modified Barycentre approach. Specifically, each
expert proposes an n-dimensional stochastic process driven by different Brownian motions. The
combined meta model is created by penalising each experts’ model using a weighted relative entropy,
where the weights may be proportional to an expert’s historical performance. We prove existence
and uniqueness of the meta model, derive its dynamics, and develop deep learning algorithms to
estimate the barycentre of models. Furthermore, we allow the meta model to satisfy agreed upon
external views, in which case the meta model is modify in a minimal manner to respect the external
beliefs.
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Imputation of missing data is a pivotal step in statistical analysis, ensuring that the integrity
of analyses is maintained, data usage is maximized, and bias is mitigated. Missing data, if not
handled properly, can lead to biased conclusions, incomplete analyses, and reduced statistical
power. A common but suboptimal method of dealing with missing data is listwise deletion, where
cases with missing values are discarded, reducing the sample size and potentially introducing bias
if the data is not Missing Completely at Random (MCAR) [1]. This method not only wastes
valuable information but also compromises the generalizability of the results, particularly when
the missingness mechanism is more complex, such as Missing at Random (MAR) or Missing Not at
Random (MNAR). To avoid these pitfalls, imputation offers a more robust approach by estimating
and filling in the missing values, thereby preserving the sample size and minimizing bias [2, 3].

Imputation is especially important in fields like machine learning, predictive modeling, and real-
world applications where missing data is almost unavoidable. Reasons for missingness range from
human errors and non-responses to technical failures, all of which can hinder the performance
of analytical models if not addressed properly. Most machine learning algorithms do not handle
missing data natively, and failure to impute missing values can result in poorer model accuracy,
weaker generalization, and skewed insights. By imputing missing values, all available data can be
leveraged, which strengthens the statistical power and ensures that model training and evaluation
are performed with a complete dataset [4]. In these contexts, effective imputation not only improves
model performance but also enables robust, data-driven decisions, even when data is far from ideal
[5].

Beyond individual datasets, imputing missing data also facilitates cross-dataset comparisons and
integrations. In many real-world analytical applications, integrating or comparing multiple datasets
is crucial, especially when trying to synthesize findings across studies or domains. However, missing
values can impede such efforts by introducing inconsistencies. Imputation helps standardize the
data across these datasets, ensuring the analysis is valid and reducing discrepancies caused by
incomplete information [3].

In this study, we advance the field of missing data imputation by applying global sensitivity analysis
(GSA) to develop a comprehensive protocol for imputing missing values. The guiding principle
behind our approach is to model the modeling process itself—applying GSA to evaluate not only
the input parameters but also the assumptions and relationships embedded within the imputation
model. By doing so, we assess how uncertainties in input variables affect the imputation outcomes,
ultimately aiming to maximize imputation accuracy. This innovative approach represents a step
forward in enhancing the robustness of imputation algorithms by systematically optimizing the
conditions under which they perform best [6].

Our test case involves the Harmonised European Time Use Survey (HETUS), where participants
provide detailed information on how they allocate their daily activities and the locations where
these activities occur. In this survey, missing data often affects the location information for certain
activities. Our goal is to determine whether socioeconomic input variables can be used to impute
the missing location data associated with these activities. We approach this problem using a two-
stage imputation process. In the first stage, missing socioeconomic features are imputed, and in
the second stage, we estimate activity-location probabilities based on the imputed socioeconomic
data. To assess the performance of our method, we use artificially generated datasets with varying
percentages of missing data, allowing us to measure the accuracy of the imputation under different
conditions.

The results of our analysis highlight the usefulness of global sensitivity analysis in identifying the
conditions under which the imputation algorithm performs most effectively. Through GSA, we are
able to systematically explore how variations in model parameters and assumptions influence the
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output, ultimately leading to more accurate and reliable imputations. This contribution sits at the
intersection of machine learning and global sensitivity analysis, an emerging nexus that emphasizes
the need for transparent, robust, and well-informed use of algorithms in statistical and predictive
modeling contexts. Our work builds on previous research that advocates for the integration of
fairness and interpretability in machine learning models, ensuring that imputation processes are
not only accurate but also contextually appropriate and equitable [7].
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Abstract

Partial Differential Equations (PDEs) can be efficiently solved by well-established numerical
methods, such as Finite-Elements (FE) or Finite-Volumes (FV). However, these methods suffer
from the necessity to construct grids and discretization schemes specific to the equations con-
sidered. Moreover, the account for possible existing data is tedious and multi-query problems,
like design optimization or uncertainty quantification, require several resolutions.

Recently, Physics Informed Neural Networks (PINNs) [1] have emerged as an alternate approach,
whose objective is to approximate the solution by the output of a feed-forward neural network.
The inputs are the space-time coordinates of the problem and the network parameters (weights
and biases) are calibrated by minimizimg a loss function that combines the PDE residuals and
the boundary conditions, evaluated on a set of sampling points. PINNs have many advantages
[2]: they can solve forward, inverse or parametric problems, they allow to add data measurements
in the training loss, if available, and they only require a sampling of the space-time domain.
Nevertheless, several studies reported convergence difficulties in the training [3], plus a long
and painful selection of hyper-parameters (network architecture, optimizer, activation function,
sampling, etc.) is often necessary to make the approach successful. Therefore, the goal of this
work is to analyse and improve PINNs convergence, with novel dedicated optimization methods.

Firstly, we analyse the convergence of PINNs on a benchmark problem involving the steady
flow in a differentially heated cavity, based on the incompressible Navier-Stokes equations with
boyancy and heat transport. Specifically, we compared the convergence of the training with
two different loss functions: a first one based on the PDE residuals, according to the PINNs
paradigm, and a second one based on a classical data fitting, using a FE solution as data. We
observed that PINNs converge slower in terms of solution values (estimated for an independent
set of points) but outclass the data-fitting formulation in terms of respect of the physics (via
the PDE residuals), as illustrated in figure (1). We also reported that the PINNs formulation
yields an ill-conditioned Hessian matrix, which necessitates the use of second-order optimizers
(quasi-Newton), contrary to the data fitting formulation for which the standard first-order Adam
algorithm performs well. Finally, we characterized the antagonism between the loss terms related
to the PDE residuals and the one related to the boundary conditions, which could be a cause
of the ill-conditioning. Some approaches have been proposed to mitigate this difficulty using
adaptive weights [4] or gradient projections [5], but poor results are reported in practice, one
criterion dominating often the other one.

Therefore, we propose to adopt a multi-criteria viewpoint for the training, to determine a bal-
anced compromise between the minimisation of the PDE residuals and the satisfaction of the

1
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(a) Error related to solution value (b) Error related to physical residuals

Figure 1: Comparison between a PINN and a data-fitting NN

boundary conditions. In particular, a Nash game is defined by subdividing the network param-
eters in different sets, each of them being calibrated to minimize specific loss term. Promising
results are obtained for a simple 1D problem. The extension to more complex problems is in
progress.
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Hydro-morphodynamic modelling is affected from different sources of uncertainty, which occur
in process-based models, such as inaccuracy in the model inputs, errors in model structure (e.g.,
poorly described or omitted physical processes), and from limited computing resources. This study
is motivated by the analysis and the characterization of some of these uncertainties, elucidating the
factors contributing most significantly to the variability of the model output by employing Sobol
sensitivity analysis indices [1]. In practice, the computation of Sobol indices, which involves the
stochastic estimation of statistical moments and sensitivity indices, is commonly performed using
the Monte Carlo method. However, this approach can be computationally expensive, and the
runtime can be significantly reduced by employing a surrogate model in place of the high-fidelity
solver. One such surrogate modeling technique is the Polynomial Chaos Expansion (PCE) strategy
[2], which approximates the model output Y = f(X), where X ∈ DX ⊂ Rd, by a polynomial Ŷ of
degree P , constructed from a set of polynomial basis functions {Φα}α defined on DX , which are
orthonormal with respect to the law of the input vector X. The PCE approximation is defined as:

Ŷ =
∑

|α|≤P

yαΦα(X)

where {yα}α are the coefficients of Y in the orthonormal basis {Φα}α.
The inherent non-linearity of processes in morphological models often causes model outputs to
exhibit low sensitivity to input variations until a critical morphological threshold is reached. To
accurately represent this variability using a global polynomial approximation, high-degree poly-
nomials would be required, leading to increased numerical complexity. Drawing inspiration from
regression trees in supervised learning, we propose an adaptation of the Polynomial Chaos Ex-
pansion (PCE) method, called Tree-PCE [3], to address this challenge in complex models. This
approach decomposes the input domain into hyperrectangular subdomains, indexed by a binary
tree, where local PCE is applied within each subdomain R. The Tree-PCE global metamodel
obtained from local metamodels defined by

Ŷ =
∑

R

∑

|α|≤P

yRαΦ
R
α (X)
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with {ΦR
α}α being a polynomial basis orthonormal with respect to the low of X on the subdomain

R and {yα}Rα are the coefficients of Y in the orthonormal basis {Φα}Rα .

By minimizing the influence of irregularities
within these subdomains, the method enables
the use of local low-degree polynomial approxi-
mations. The resulting local metamodels effec-
tively capture the model’s behavior in each re-
gion, significantly improving the representation
of complex dynamics. In contrast, a global poly-
nomial model would require a much higher de-
gree to achieve comparable performance. More-
over, a by-product of this approach is an analyt-
ical formula allowing the computation of global
Sobol indices from the coefficients of the local
PCE with almost no additional cost. Comparison of approximating a discontinuous

function by standard PCE and Tree-PCE.

The idea of using local Polynomial Chaos Expansions (PCE) has already been explored in the
literature. For instance, works such as El Garnoussi et al. (2020) [4] and Dréau et al. (2023) [5]
have proposed techniques to decompose the input domain into subdomains and apply local PCE
within each. Additionally, Poette and Lucor (2012) [6] introduced an iterative PCE method to
enhance the accuracy of non-linear models. However, these approaches have not yet achieved the
capability to directly compute Sobol indices from the obtained metamodel coefficients, which is a
distinctive advantage of our method.

In conclusion, the proposed method provides a cost-effective solution for uncertainty quantification
of complex model behaviors, particularly in hydro-morphodynamic modeling, by enhancing the
precision of metamodeling and Sobol indices estimation. The results demonstrate its potential to
significantly improve the accuracy and reliability of model predictions, especially when addressing
complex dynamics.
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Energy system optimization models (ESOMs) have emerged as valuable tools for guiding present-
day decisions for the energy transition based on assumptions about the future. These future
assumptions hold much uncertainty, which propagates to the model outputs. If not considered,
this uncertainty can lead to unintended future outcomes. One way to address this uncertainty is by
identifying the most influential parameters on the model output variability. With this information,
we can refine the corresponding assumptions, or make present-day decisions more resilient to them.

Global sensitivity analysis (GSA) is a powerful tool for determining the most influential parameters
on a model’s output variability [1]. However, GSA can be challenging for computationally intensive
models with thousands of parameters. ESOMs usually fall into this classification due to the
required spatial and temporal resolution and the energy sectors they consider. GSA via variance
decomposition for Sobol indices requires N · (p + 2) model evaluations, with p being the number
of model parameters (on the order of 102-103) and N a number greater than 500 [2]. The model
evaluations required for GSA can significantly decrease via the Morris method, requiring r · (p+1)
model evaluations with r being the number of trajectories (often between 5 and 50). However,
the Morris method mainly serves for screening without quantitative information on uncertainty
contributions from parameter interactions [1]. Due to these limitations, performing GSAs on large-
scale ESOMs with quantified uncertainty contributions is a current challenge.

In this work, we propose an efficient method for GSA of computationally intense ESOMs. For
this purpose, we employ derivative-based global sensitivity measures (DGSMs), derived from the
expected square of the model derivatives with respect to each parameter. DGSMs are a promising
GSA alternative, as calculation of the DGSMs requires a sample size, N , of model evaluations,
independent of the number of model parameters, while providing an upper bound on the total
Sobol indices [3]. DGSMs combine the quantitative benefits of Sobol index-based methods with
the computational efficiency of the Morris screening method.

Calculating the DGSMs, however, requires derivatives of the model outputs with respect to the
input parameters. Optimization problems don’t have an analytical form relating the decision
variables to the model parameters. Therefore, there’s no analytical expression for the derivatives.
However, derivatives can be calculated at the optimal point by implicit differentiation of the set of
Karush-Kuhn-Tucker (KKT) conditions [4]. The KKT conditions provide a set of necessary and
sufficient conditions for optimality. The KKT conditions take the form K(θ, z∗) = 0, where θ are
the optimization problem parameters and z∗ is a vector containing the optimal decision variables
x∗ and the problem dual variables (λ∗, µ∗). Implicit differentiation stems from the implicit function
theorem, which states that given an implicit system of equations, F (x, y), and a point (x0, y0) at
which F (x0, y0) = 0 and JyF (x0, y0) ̸= 0, there exists an explicit system of equations y(x) on an
interval containing x0 such that JyF (x0) = −[JyF (x0, y0)]

−1 · JxF (x0, y0). As long as the partial
Jacobian of the KKT conditions, JzK(θ, z∗) is non-singular, one can apply the implicit function
theorem to the KKT conditions to obtain the sensitivities of the model decision variables to the
model parameters, Jθz

∗(θ) (Equation 1).

Jθz
∗(θ) = −[JzK(θ, z∗)]−1 · JθK(θ, z∗) (1)
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Implicit differentiation of an optimization problem’s KKT conditions has been applied in several
disciplines such as process controls for determining on-line parameter sensitivities, machine learning
for gradient-based neural network training, and energy systems optimization for calculating emis-
sions factors. In this work, we use this technique to enable DGSM-based GSA for computationally
intensive ESOMs for which calculation of Sobol indices is not feasible.

We carry out our DGSM-based GSA via implicit differentiation on a small ESOM and compare the
resulting DGSMs to the total Sobol indices, ST , calculated via variance decomposition using the
SALib library in Python [5]. Our model minimizes the cost of n operating electricity generation
technologies, xi, with costs, ci, subject to maximum generation constraints, Gi, and a total load,
L, which must be satisfied.

Our preliminary results show that for most model parameters, DGSM-based GSA provides upper
bounds for the total Sobol indices for with 78% less computation time (Table 1). The piece-wise
constant nature of the decision variables of linear optimization problems with respect to objective
function coefficients leads to zero-valued derivatives, highlighting a limitation of our method. We
address this limitation by adding a quadratic penalty term to the objective function. Overall, we
propose a method that enables GSA of computationally intense ESOMs, allowing to better-consider
uncertainty in present-day decision-making.

Table 1: Computation time and sensitivity measure comparisons for total Sobol indices, ST , cal-
culated via variance decomposition, and DGSMs calculated via implicit differentiation.

sensitivity of model decision variable, xi

to model parameters:
method computation time L Gj ̸=i Gj=i cj ̸=i cj=i

DGSM 16 min 1.4 0.006 0.02 0 0
DGSM (+ penalty term) 18 min 1.1 0.003 0.02 0.2 0.8
ST 72 min 0.5 0.004 0.01 0.1 0.6
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Abstract

The approximation of solutions of partial differential equations (PDE) using techniques issued
from Gaussian process regression (GPR) has evolved significantly in recent years [2, 4]. The key
element in GPR methods is the construction of a kernel function satisfying specific properties,
such as continuous conditioning around a curve [3]. These properties are in turn transferred to
the corresponding reproducing kernel Hilbert space (RKHS) and can be associated to specific
PDE constraints. In fluid mechanics, there have been advances on using GPR techniques whether
from a pure data approach in order to estimate target functionals of interest [1], or even for
obtaining alternative numerical methods through the definition of a representer formula over a
RKHS [6].

Given a scalar Gaussian process f ∼ GP (0, G) indexed over a domain Ω ⊂ R2, consider the vector
Gaussian process given by Z = ∇f⊥ = (−∂x2

f, ∂x1
f)⊺ ∼ GP (0,K) where K is a matrix–valued

kernel satisfying a divergence–free condition. A reconstruction formula u⋆ for velocity u, based
on a Lagrangian simulation of a viscous flow over the periodic domain Ω during a time interval
[0, T ], is proposed [6] :

u⋆(x, t) = E (Z(x) | curl Z(Q(t)) = W (t) ) , x ∈ Ω, t ∈ [0, T ], (1)

where Q = (qi)
N
i=1 is a set of N collocation trajectories associated to the vorticity values

W = (wi)
N
i=1. Thus, a vorticity reconstruction formula follows directly from w⋆ = curlu⋆.

We propose a reconstruction approach to simulate 2D incompressible flows in a tunnel setting
with an obstacle (e.g. cylinder or airfoil profile) through estimation from a physics–informed
curve–constrained Gaussian process. Considering flow data obtained from high–precision external

simulations, where V = (vj)
Ndata

j=1 are the velocity values on the Ndata trajectories Y =
(
yj

)Ndata

j=1
;

inlet and exit boundary conditions on velocity Ṽ = (ṽk)
Nbd

k=1 over Nbd boundary points X̃ =

(x̃k)
Nbd

k=1, and physical constraints around an obstacle D, we study a reconstruction approach
that combines data and a numerical method on the vorticity system. For the centered Gaussian
process ZD associated to a curve–constrained kernel KD, an estimation formula for velocity will
be of the form :

u⋆(x, t) = E
(
ZD(x) | ZD(Y (t)) = V (t), ZD(X̃) = Ṽ , curl ZD(Q(t)) = W (t)

)
, (2)

1
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Figure 1: Velocity field and vorticity (colormap) reconstruction from GPR using an obstacle–constrained
physics–informed kernel and Nbd = 40 domain boundary condition points (orange). No discrete condition points
are used in the obstacle boundary for the interpolation.

for x ∈ Ω and t ∈ [0, T ]. These approaches allows us to quantify uncertainty by means of the
covariance versions of representation formulas (1) and (2).

Further data and collocation sub–sampling techniques are being studied to enhance the perfor-
mance of the estimation at each time step, as well as kernel parameters identification by maximum
likelihood estimation (MLE). We aim to adapt this reconstruction approach to integrate particle
tracking velocimetry (PTV) data in a 2D and 3D Lagrangian setting [5].
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The building sector in France represents 25 % of its annual national carbon footprint. A future
low-carbon economy must rely on effective energy conservation measures implemented today in the
existing building stock. However, energy retrofits of building fabric face the issue of the so-called
performance gap: actual energy use is significantly higher than initially designed [1]. The causes
of the performance gap are manifold, bt primarily due to different and carbon-intensive usage
patterns and/or poor workmanship. Addressing the performance gap by ensuring the quality of
energy conservation measures in buildings is essential.

On-site measurement of a building’s thermal performance is considered as a major tool to guar-
antee actual energy savings. The thermal performance can be characterized by measuring the
overall Heat transfer Coefficient (HTC) of the building envelope [2], which indicates the amount
of heat flowing through the fabric given a temperature difference between the indoor and outdoor
environments. The measurement involves solving an inverse problem: (1) heat is uniformly de-
livered indoors through heating devices while indoor and outdoor temperatures are measured (2)
these measurements feed an appropriate model, dynamic or steady-state, that predicts the indoor
temperature from the outdoor air temperature and the heat delivered, depending on the HTC.

Today, HTC measurement methods for detached housing have been the focus of a decade of
academic and industrial research, and a few can be considered as mature. However, no method
has yet been developed for housing blocks. This is because direct measurement is rarely feasible.
It is technically challenging to uniformly heat dozens of apartments simultaneously. Sampling
the entire envelope by measuring a predetermined set of apartments is a viable alternative but
raises several issues. The measurement of each apartment si more uncertain than for detached
housing due to heat transfer to neighboring units [3]. Consequently, only the apartments with
the largest exterior surface areas are included in the sample, typically limiting the number of
measured apartments to four due to operational constraints. This sampling is likely sub-optimal
and not representative of th overall building fabric. In addition, inferring the entire building heat
transfer coefficient from the samples is intractable: its definition in Equation (1) is calculated
from estimates of Ui (the areal heat loss coefficient of each wall type) and Ψj (the linear thermal
bridge coefficients), which themselves are estimated from the measurement of the HTCk for each
apartment, as in Equation (2).

HTC =
∑

i≥3

Ui · Soveral
i +

∑

j≥2

Ψj · Loveral
j (1)

for k ≤ 4 apartments: HTCk =
∑

i≥3

Ui · Sk
i +

∑

j≥2

Ψj · Lk
j (2)

However, from a Bayesian point of view, the problem becomes tractable as long as the prior
distributions are proper [4]. This can be done by translating the prior degree of belief about the
thermal performance of the building fabric into probability distribution. Accordingly, the issue
addressed by this study is (1) to create an appropriate probabilistic model and (2) to identify the
minimal set of apartment and local Ui measurements required to detect a counter-performance
with sufficient certainty.

In this context, the probabilistic model aims at answering the following question: given the available
information and data, what is the risk of a counter-performance relative to what was expected in the
design phase? To address this, the model translates the set of equations in Equation (2), treating
each parameter Ψj as a normal distribution and each Ui as a mixture of normal distributions of size
n + 1 where n is the number of local Ui measurement performed. A mixture normal distribution
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accounts for potential thermal heterogeneity in walls, as would happen with construction defects.

The priors are set based on design-phase expectations, with an expanded uncertainty of 20%.
This has the advantage of assigning zero probability all non-significant thermal bridges, which
considerably reduces the parameter space. However, neglecting thermal bridges might introduce
a model error, preventing the posterior distribution of the HTC from being considered a reliable
estimate of the actual HTC, as practical identifiability may be lost in the process.

Updating the parameter distributions is done by integrating the HTCk measurements of each
apartment and any local measurements of Ui. Although the predicted posterior HTC is no longer
identifiable, it still reflects the probability of an overal counter-performance given the collected
data. To evaluate the performance hypothesis, the highest density interval (HDI) of the HTC
distribution is compared to a target zone called Region of Practical Equivalence (ROPE) [5, 6],
defined as ] − ∞;HTCdesign + 20%]. The performance hypothesis is accepted if the HDI falls
entirely within the ROPE, rejected if it falls entirely outside of the ROPE, and undecided if its
spans both sides.

At this point, solving the problem using a Bayesian approach becomes feasible. Nevertheless,
there is no free lunch and uncertainty in the measurements could undermine the process. In other
words, the approach would be ineffective if the hypothesis is always undecided or if there are false
positives–i.e. accepting the hypothesis when the building is highly counter-performant. To test the
process, a set of numerical experiments was conducted, showing that with the defined ROPE, and
with at least three apartment measurements and two wall-types repeated U measurements, there
are no false positives, and counter-performance is detected with 35% or greater HTC difference.

As a conclusion, the current approach to assessing counter-performance of a housing block provides
a formal probabilistic understanding of the actual belief in the building fabric’s performance. The
approach has been proven reliable and can detect counter-performances of 35 % and higher with
reasonable certainty.
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Abstract

Robustness analysis is a subdomain of uncertainty quantification that deals with the uncertainty
propagation through a computer code G (assumed costly) of its input probability distributions.
More specifically, the inputs (X1, ..., Xd) of G take uncertain values which usually correspond
to physical measurements. Therefore, the uncertainty on these inputs Xi is modeled by a
probability distribution fi that is determined through physical experiments, hence fi is itself
uncertain. The goal of a robustness analysis method is then to: (a) take into account the
uncertainty on fi, this is done by defining a distributional perturbation method; (b) assess the
impact on a quantity of interest (QoI) of the output Y = G(X) of a perturbation on the inputs
through robustness indices.

In this talk, we will present these two aspects of a specific robustness analysis method initially
proposed in [1].

In the first part of this presentation, we will focus on the distributional perturbation method
that is based on the Fisher-Rao distance on parametric families of probability distributions
P = {gθ}θ∈Θ. This particular distance, on P, derived from the Fisher information metric, has
a geometric origin: it is the length of the shortest path connecting two points in P. The Fisher-
Rao distance presents many interesting properties for the purpose of robustness analysis. One
of these properties is the universality of a (small) distance value δ > 0 in two different families:
if P = {gθ}θ∈Θ and Q = {hξ}ξ∈Ξ are two parametric families of probability distributions with
their respective Fisher-Rao distance dP and dQ, then if dP(gθ, gθ′) = dQ(hξ, hξ′) = δ > 0 we can
conclude that gθ and gθ′ are “as far apart as” hξ and hξ′ . This is a consequence of the Cramér-
Rao lower bound and holds even though these distributions belong to two different families each
possessing its own Fisher-Rao distance.

In the second part of this presentation, we will explain how the impact of a distributional
perturbation on the inputs is assessed through robustness indices. These indices are denoted
Siδ for each input Xi and a perturbation level δ. They quantify the relative variation of the QoI
of the output before and after perturbation of the input distributions

Siδ =
Q(Y iδ)−Q(Y )

Q(Y )
,

1
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where Q(Y ) is a QoI of Y , usually a quantile, and Y and Y iδ are respectively the initial and
perturbed output of G. Since these statistical quantities are not explicitly known, a statistical
estimation method is necessary which takes into account the computation cost of G. The
estimation method that we use is importance sampling. A central limit theorem is available
for the estimators of both Q(Y ) and Q(Y iδ) but the asymptotic variance depends respectively
on the density function of Y and Y iδ which is hard to estimate [1, 2]. For this reason, we
decided to construct non-asymptotic confidence intervals for the output QoI based on well known
concentration inequalities [3]. This will be illustrated on different analytical and industrial cases.
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Gaussian Processes (GPs) are recognized for their effectiveness as metamodels of numerical simu-
lators [6]. They offer a Bayesian framework for supervised learning, allowing the incorporation of
prior knowledge about a function through suitable kernel selection [7].

A widely used kernel in GP modeling is the anisotropic Matérn covariance function [7], which can
be written as

kν,σ,ρ(x, y) := σ2 2
1−ν

Γ(ν)

(√
2νhρ

)ν

Kν

(√
2νhρ

)
, with hρ =

( d∑

i

(xi − yi)
2

ρ2i

)1/2

,

and where Γ is the Gamma function, and Kν is the modified Bessel function of the second kind.

The parameters ν ∈ R+, σ ∈ R+ and ρ = (ρ1, . . . , ρd) ∈ R+d
are usually selected using the

maximum likelihood approach (see, e.g., [4]). This covariance function is known for its ability
to model functions with different degrees of smoothness and variable correlations across different
dimensions.

Building upon this framework, our work focuses on identifying inactive variables—those with no
influence on the function output—in settings where the number of active variables is small (e.g.,
fewer than 20) but the overall dimensionality is large (e.g., greater than 50). Specifically, we
consider functions f : Rd → R, for which there exists function of k inputs, g : Rk → R, such that:

f(x) = g(x(1), x(2), . . . , x(k)), x = (x1, . . . , xd) ∈ Rd and {(1), ..., (k)} ⊂ {1, ..., d}.

To sequentially identify inactive variables and reduce dimensionality using GPs, a common first idea
is to use sensitivity analysis, such as in the work of Marrel et al. [3], where GPs are combined with
HSIC (Hilbert-Schmidt Independence Criterion) indices to assess variable importance. Another
approach, as demonstrated by Salem et al. [5], relies on the lengthscale parameters ρ1, . . . , ρd of
the GP covariance function kν,σ,ρ. In this method, large values of a lengthscale parameter indicate
slow variation of the output with respect to the corresponding variable, signifying that the variable
is likely inactive.

Our method builds on the latter approach, relying on the lengthscale parameters and adopting a
fully Bayesian framework (see, e.g., [1]). We generate samples from the posterior distribution of
the lengthscale parameters using a Metropolis-Hastings algorithm. The main idea of the proposed
approach is to introduce an inactive control variable xd+1, which allows us to establish a reference
posterior density for the lengthscale parameters of inactive variables. To determine whether a given
variable is active, a significance level α is first fixed, and a threshold tα is computed such that the
posterior probability Pn(ρd+1 > tα) ≥ 1−α, where ρd+1 is the lenghscale parameter of the control
variable xd+1. Then, we introduce indices Pi = Pn(ρi ≤ tα), which reflect the probability that the
variable xi is active.

Initial comparisons between our method and R2
HSIC indices [2] demonstrate promising results (see,

e.g., Figure 1).
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(a) f1(x) =
1
3

∑5
i=1

(
x(i) + 2.2

∏5
i<j=2 x(i)x(j)

) (b) f2(x) = 6x(1) + 4x(2) + 5.5x(3) + 3x(1)x(2) +
2.2x(1)x(3)+1.4x(2)x(3)+x(4)+0.5x(5)+0.2x(6)+
0.1x(7)

Figure 1: Distributions of the lengthscale-based indices Pi (blue, α = 5%) and the R2
HSIC indices [2]

(orange), providing a comparison of variable importance, with a focus on distinguishing between
active (1, . . . , k), control (contr), and inactive (inac) variables, for 20 repetitions of random uniform
designs of size n = 30. Functions f1 and f2 have k = 5 and k = 7 active variables, respectively,
within an overall dimension of d = 50. Two randomly selected inactive variables from the set of
d− k are also represented.
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[ Enikő Bartók; IFPEN — Université Paris–Saclay — Laboratoire des Signaux et Systèmes ]
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Sébastien Roux
MISTEA, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Patrice Loisel
MISTEA, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Samuel Buis
EMMAH, INRAE, Avignon Université, Avignon, France

The present work is motivated by the Sensitivity Analysis (SA) of models having multivariate
(MV) inputs among their input factors. SA in this context is challenging because of dependency
issues within the MV input components, which prevents to find and characterize easily the sensitive
ones.

We investigate the use of clustering in order to provide more insights on the sensitive components
of MV sensitive inputs. More precisely, we propose to use clustering to find groups of MV inputs
samples such that group characteristics explains as best as possible the influence of the MV inputs.
When successful, this strategy means that group characteristics are good summaries of the MV
inputs influence on the model outputs.

In order to apply this strategy, two questions must be answered: i) how to define quantitatively
the influence of groups on the output variability and ii) how to find clustering that maximize the
associated criteria.

Notations:
We study y = f(w, z), where w is a complex input (typically a vector of weather variables in
environmental models) and z an independent input (possibly a large vector grouping all other
inputs of interest). Using a labeling approach [2] based on samples w1, ...,wL, we now study
y = g(l, z) = f(wl, z). The Sobol’ decomposition on g writes simply: Sl + Sz + Slz = 1.

We introduce a general clustering function C such that C(l) = c ∈ 1, ..,K is the cluster label of the
input with label l. We introduce also a ’within-cluster selection factor’ u ∈ [0, 1[ that is used to
choose elements within a cluster.
Let us note (lc1, .., l

c
Nc

) the Nc elements in cluster c. We denote as h the model having cluster labels
and selection factors (along with the co-variable z) as inputs: h(c, z, u) = g(lc⌊u.Nc⌋+1, z), where

⌊x⌋ is the integer part of x.

Sensitivity analysis with selection factor u:
Our central idea to define clustering criteria is to use the sensitivity indices associated to model h,
where the cluster label c has a discrete distribution with values c1, .., cK and probabilities p1, .., pK
(probabilities of clusters according to their size), where u has an uniform distribution within [0, 1[
and z its (unchanged) uncertainty distribution. Writing the Sobol’ decomposition on h, we have:
Sc + Sz + Scz + ST

u = 1,where ST denotes a total Sobol’ index.

First clustering problem: max
C(.)

Sc

This optimization problem will allow to find clustering that maximize the main effect of the cluster

type, which is at best equal to Sl. More precisely, we show that Sc = Sl −
1

V

K∑

c=1

pcṼc, where

Ṽc = Vl∈cEz[g(l, z)]. We show that solutions of this problem are defined using quantiles of the
distributions Ez[g(l, z)], leading to an efficient numerical algorithm to find solutions of the global
optimization problem. However a drawback of this criterion is that it does not take into account
the variability of model responses along direction z.

Second clustering problem: min
C(.)

ST
u

106



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

Using this criterion, we try to minimize the effect of the within-cluster selection factor u, thus to
minimize the effect (this time including interaction effects) of the within-cluster variability. We

show that ST
u =

1

V
Ez[

K∑

c=1

pcVc(z)], with Vc(z) = Vl∈c[g(l, z)]. We show that numerical solutions

of this problem can be found using a K-means like algorithm. Compared to a classical K-means
problem, our algorithm uses distances in the space of outputs, i.e not in the space of the variable
to be clustered.

Numerical examples
We implemented the algorithms for solving the two previous problems and tested them firstly on
a simple function at the level of gl (i.e. on functions having label l and co-variable z as inputs).
The model output y has no variability along z for l ≤ 75, where y = 1+ 0.005 l. For l > 75, Ez[y]
is also equal to 1+ 0.005 l, but y can take two values depending on z, which are inverted if l > 87.
We can see in Figure 1 that the ST

u -based criterion takes into account the variability along z and
creates clusters in the region of variability in z, which was not the case of the Sc-based criterion.
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Figure 1: Clustering result of a simple model for the two criteria. Left: model definition; Middle:
clustering based on Sc; Right: clustering based on ST

u .

We will also present during the conference clustering on a crop model [1] having vector of weather
variables among its inputs. We will be particularly interested in looking at the influence of the
number of clusters and in showing how the produced clusters can help to better understand the
influence of weather inputs.

References:

[1] Nadine Brisson et al. “An overview of the crop model STICS”. In: European Journal of agron-
omy 18.3-4 (2003), pp. 309–332.

[2] Linda Lilburne and Stefano Tarantola. “Sensitivity analysis of spatial models”. In: Interna-
tional Journal of Geographical Information Science 23.2 (2009), pp. 151–168.

[ Presenting author’s name; affiliation and regular mailing address ]
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Global activity scores
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We present a generalization of the active subspace method called “global active subspace method”,
and its corresponding sensitivity measure called “global activity scores”. The new methods are
based on the expectation of finite-differences of the underlying function, as opposed to the gradient
information in the active subspace method. We will present theoretical and numerical results show-
ing the advantages of the new methods. In particular, we will present numerical examples where we
compare the results of the global sensitivity analysis of some models using Sobol’ sensitivity indices,
derivative-based sensitivity measures, activity scores, and global activity scores. The numerical
results reveal the scenarios when the global activity score has advantages over derivative-based
sensitivity measures and activity scores, and when the three measures give similar results..
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Abstract

Rare event analysis often involves the estimation of the rare event probability p = Pf (X ∈ A),
where f = N(0, I) is the d-dimensional standard Gaussian distribution, which is a fairly general
setting owing to isoprobabilistic transformations [8]. Whereas Adaptive Splitting [3] concerns
the modification of the trajectories of the samples towards the region of interest A, Importance
Sampling (IS) considers an auxiliary distribution g which allocates more probability mass in A
than f . Given ng samples (Yi)i=1...n generated according to g to whom 1 (· ∈ A) f is absolutely
continuous, the IS estimator is written as

p̂g =
1

ng

ng∑

i=1

f(Yi)

g(Yi)
1 (Yi ∈ A)

In low dimension, IS estimators are often employed due to the desired variance reduction prop-
erty compared to Monte Carlo estimator. However, in high dimension, IS estimators suffer
from convergence issues and become extremely sensitive to the choice of auxiliary distribution.
This motivates a theoretical study on the convergence of IS estimators in the high-dimensional
setting, d → +∞.

As d → +∞, two settings can arise: either the probability to be estimated is bounded away
from zero: infd p > 0, or the probability tends to zero with the dimension: p → 0. The first
setting infd p > 0, considered by [1, 4], occurs when p involves a stochastic process which is
approximated by a finite sum of random variables by principal component analysis. Then, the
probability to estimate becomes pd, which tends to p > 0 when d → ∞. In this setting, We will
discuss our work on the convergence of the Cross-Entropy scheme [2] as well as its projection
and improved variants [5, 10, 9].

The second setting, p → 0 as d → ∞, considered by [7, 6], occurs in specific settings such as in
Highly Reliable Markovian Systems or in static network reliability estimation. This setting is
more complex since the properties of IS estimators are reliant on the rate of convergence of p
to 0. To tackle this setting, we first establish necessary and sufficient conditions for general IS
estimators to be consistent, and conditions to verify a Central Limit Theorem towards a normal
distribution. We then translate these conditions into the necessary rate of growth of the sample
size ng for various auxiliary distributions in a classical large deviation setting, A = {x ∈ Rd :∑d

j=1 x(j) ≥ dγ} with γ > 1/2. It will be observed that the ‘optimal’ Gaussian density for IS
largely depends on the error metric considered.

1
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Figure 1: The histogram (ng = 1000) and the evolution of usual error metrics with ng of p̂g for
two choices of auxiliary density: which is better?
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Air and water pollution are now a major public health issue, and developing efficient detection 
methods to better monitor this pollution is essential to reduce the risk of exposure. Innovative 
materials such as nanomaterial-based sensors [1] have been proposed for their high sensitivity 
to different chemical species in air and water and their ability to detect them even in very low 
concentrations. However, if in laboratory these sensors are able to show encouraging results, 
the passage in real conditions generally pose difficulties. This is often due to the fact that these 
sensors are not very selective, and that in addition to reacting to changes in the concentrations 
of the pollutants of interest, they may also depend on several other environmental variables, 
such as temperature or relative humidity.  
 
As the calibration relationship between the sensor outputs, the pollutant concentrations and the 
other environmental variables is often unknown, two distinct phases are needed for these 
sensors to be used in uncontrolled environments. In the first step, this relationship is estimated 
using labelled data provided by reference sensors. In the second step, this relationship is used 
to predict the pollutant concentration from the sensor outputs only. Several factors make this 
estimation challenging: the potential existence of unmeasured but influential pollutants, the 
measurement noise on the input and output data, and the likely non-linearity of the calibration 
relationship (see [2,3] for more details). 
 
A key point of the calibration process is the selection of the appropriate environmental variables 
in the prediction model. In fact, due to strong correlations between environmental variables, 
one often observes that the calibration model performance improves when including a variable 
not directly influencing the sensor. On the other hand, this improvement actually constitutes 
“overlearning”, as it does not transfer to times or places where the correlations between 
environmental variables are different. Conversely, if one does not take into account an 
environmental variable that has a true influence on the sensor, one directly degrades its 
measurement performance. Identifying the optimal number of environmental variables to 
include in the calibration process for effective sensor deployment is therefore critical.   
 
The present contribution focuses on this selection process. Based on experimental data, and  
simulated data (designed to be similar to the experimental one), we show that conventional 
sensitivity analysis techniques are confronted with considerable difficulties due to measurement 
noise and due to the high degree of correlation between variables. Similarly, we show that linear 
regressions and statistical tests allowing to identify the variables with very limited influence on 
the sensor responses are hindered by unobserved variables and do not fully answer the question.  
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As an alternative, we propose a new variance-based selection method. It allows a better 
compromise between significant influence on the sensor and noise levels for their measurement 
by auxiliary sensors.  
 
 
 
References : 
 
[1] Deepika Tyagi Huide Wang Weichun Huang Lanping Hu Yanfeng Tang Zhinan Guo Zheng-
biao Ouyang Han Zhang. Recent advances in two-dimensional-material-based sensing 
techonology toward health and environmental monitoring applications. Nanoscale, 12:3535–
3559, 2005. 
 
[2] Bérengère Lebental Guillaume Perin. Uncertainty-based calibration method for 
environmental sensors - application to chlorine and ph monitoring with carbon nanotube sensor 
array. IEEE sensors journal, 2023. 
 
[3] Marine Dumon, Bérengère Lebental, Guillaume Perrin, Optimizing Sensor Calibration in 
Open Environments: A Bayesian Approach for Non-Specific Multisensory Systems, accepted 
to SMAI-JCM. 
 
 
[ Marine Dumon; COSYS/IMSE, Université Gustave Eiffel ] 
[ marine.dumon@univ-eiffel.fr ] 
 
 

112



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France
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Many physical systems in nature are described by stochastic differential equations (SDEs) of the
form dxt = b(xt, θ)dt+σ(xt, θ)dξt with some initial state x0 = x. For these systems, key quantities
of interest (QoIs) often take the form of expectations of an observable function f : X → R over the
invariant measure of the system p, parameterized by a set of input variables θ ∈ Ω which relate to
the drift function b and/or the diffusion function σ of the SDE:

Q(θ) = Ex∼p[f(x)] =

∫

X
f(x) p(x; θ)dx (1)

Here, the QoI Q : Ω → R is referred to as an invariant statistic of the stochastic process. In
settings where the parameter space is high-dimensional, dimension reduction techniques may be
employed to improve the efficiency of uncertainty quantification and sensitivity analysis of the QoI.

This work makes two primary contributions. First, we propose using active subspaces [1] as a
goal-oriented dimension reduction scheme for QoIs which take the form of invariant statistics of
the stochastic process. A low-dimensional subspace of the parameter space on which variation in
the QoI is greatest is identified from the eigendecomposition of the uncentered covariance matrix
C of the gradient of the QoI over a given parameter density ν:

C = Eν

[
(∇θQ)(∇θQ)T

]
=

∫
(∇θQ)(∇θQ)Tν(θ)dθ (2)

Crucially, we show that the gradient of this class of QoIs can be derived analytically and that it also
takes the form of an expectation over the invariant measure, which is computable with Monte Carlo
using long-time simulation of the stochastic process [2] rather than by approximate finite difference
schemes which suffer in high dimensions. On an illustrative example, we show that variation along
the low-dimensional subspace illuminates key geometric features of the invariant distribution which
have the greatest influence on the QoI, where the features identified are consistent across different
choices of parameterization of the invariant measure.

Second, we develop a multifidelity approach based on a novel combination of importance sampling
and control variates to address the challenge of computing a nested expectation for the gradient
covariance matrix. In particular, we construct a log-Euclidean multifidelity (LEMF) estimator [3] of

the gradient covariance matrix, ĈLEMF
β , where the “high-fidelity” estimate Ĉ(·,·) is based on direct

evaluation of the nested expectation in Eq. (2), which calls on an expensive stochastic simulation

routine for every parameter instance; and the cheaper, “low-fidelity” estimate ĈIS
(·,·) is based on

an importance sampling approximation of the gradient which requires no additional simulation or
specification of an alternate model, as done in [4]. The LEMF estimator is constructed as:

Log ĈLEMF
β = Log Ĉ(n0,l0) + β

(
Log ĈIS

(n1,l1)
− Log ĈIS

(n0,l1)

)
(3)

where β ∈ R is the regression parameter, subscript l denotes the number of samples x ∼ p(x, θ) used
to evaluate the inner expectation, and subscript n denotes the number of Monte Carlo samples
of the parameters θ ∼ ν used to evaluate the outer expectation. We show that by adopting
a control variate framework, the only requirement on the importance sampling-based estimator
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is that it maintains non-zero correlation with the target covariance matrix, leading to reduced
dependency on the fit of the biasing distribution and a flexible and cost-efficient scheme for variance
reduction. We analyze properties of the multi-fidelity estimator, such as its Monte Carlo variance
and error in the resulting active subspace, as measured by weighted subspace distances (WSD) [5].
We demonstrate our proposed methodology for sensitivity analysis of QoIs arising in molecular
dynamics, parameterized according to a high-dimensional interatomic potential model [6].
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Critical systems demand strong guaranties of safety throughout their mission. According to the
type of critical system considered, these guaranties are expressed as the fulfillment of quantitative
and/or qualitative requirements. One of the common key quantitative requirement is to ensure
that the probability of failure Pf of the system before the end of its mission is inferior to a target
threshold (typically Pf ≤ 10−4 for the aerospace applications we consider). The critical system is
here represented by a numerical input-output model with random inputs. The system failure is
associated to an output threshold exceedance. Reliability-oriented sensitivity analysis [5] aims at
evaluating the sensitivity of the inputs on the output failure. In this work, we are more precisely
interested in estimating the influence of the input distribution parameters on the failure probability
with a variance-based approach through the estimation of Sobol indices.

The input distribution parameters are usually fixed in numerical models, with the source of uncer-
tainties in the models limited to the known input distributions. In reality the parameters values
that best represent the system behavior may be unknown. This lack of knowledge about param-
eters values constitutes another level of uncertainty in the modelling of the system. Quantifying
how much these uncertainties affect the probability of failure Pf can help us identify which input
distribution parameters should be precisely estimated for a better estimation of Pf . With the in-
troduction of these parameteric uncertainties, naive estimation of the Sobol indices becomes very
expensive, needing many calls to the model to obtain input-output samples. We propose a method
to estimate the Sobol indices with adaptive enrichment of the samples.

We consider a numerical model M as a deterministic black-box, function of a random vector X of
d independent random inputs with a real output M(X). X is characterized by a probability distri-
bution function fX|θ where θ is a distribution parameter vector. The failure event is represented
by the variable 1M(X)≤T with T the threshold characterizing the failure event. The quantity of
interest is Pf (θ) = P (M(X) ≤ T ). When θ is fixed, Pf (θ) is an unknown deterministic quantity.
To represent epistemic uncertainty, the variability of θ is modeled with a continuous random vari-
able Θ. The failure probability Pf (Θ) becomes a random variable. The Sobol indices on Pf (Θ)
associated to the independant components of Θ can be estimated with the pick-freeze estimator [2],
based on an iid N-sample (Θi)i=1,...,N from Θ. However two difficulties arise for the computation
of this estimator. First, a high number of accurate probability estimations Pf (Θi)i=1,...,N have to
be performed. Second, we are in the case of rare event estimations, meaning that classical Monte
Carlo are not efficient to provide accurate probability estimation.

A possible solution is proposed in [1] for an estimation of all the Sobol indices with reverse im-
portance sampling (RIS). For a given θ0, the failure probability Pf (θ0) is estimated with Monte
Carlo method or importance sampling with sampling density g. RIS enables then to estimate
Pf (Θi)i=1,...,N without any calls to M. The corresponding Sobol indices can then be derived at
a limited cost. Nevertheless the accuracy of Pf (Θi) with RIS estimates depends mainly on the
Kullback–Leibler divergence between the optimal sampling density ∝ 1M(X)≤T fX|θi

and g. When
the variability of Θ around θ0 is too high, the RIS approximation is not sufficiently accurate and
can lead to a misestimation of the Sobol indices.

We propose an improvement of this solution with adaptive enrichment of the sample to improve
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the estimation of the Sobol indices while limiting the additional calls to M. We aim to improve
the Sobol estimation by improving the estimation of the probabilities Pf (Θi)i=1,...,N . We chose
a criterion to estimate the accuracy of the estimations of these different probabilities (e.g. the
estimated coefficient of variation of the estimator or the effective sample size [6]). After a first
estimation of the Sobol with the method of [1], we perform an IS for the least well estimated
Pf (Θi), obtaining a new sample density, new input samples and associated model outputs. These
new data fit for this particular Θi allow us to improve the estimation of Pf (Θi), but we also use
these new data in combination with the previous available data to improve as much as possible the
estimations of all the Pf (Θi)i=1,...,N . Using multiple importance sampling (mIS) [3], we search for
each Pf (Θi) the combination of available data that yields the best probability estimation. mIS
does not require additional calls to M and allow us to potentially improve on all the probability
estimations. We repeat this process of selection of Pf (Θi), adapted resampling and mIS until all
the Pf (Θi)i=1,...,N are considered sufficiently well estimated.

As case study, we will consider a drone operation safety evaluation model test case. The numerical
model considered is a timed automaton based on a functional modelling of a drone. This model is
created using the safety modelling language AltaRica 3.0 [4], we consider the model as a black box
for our study. The model takes as input vector of dimension 40 with one distribution parameter
for each dimension, corresponding to the failure time of the various components, and outputs
the time of failure of the drone after the start of operations. We are interested in studying the
probability that the drone fails within one hour of operation, and how the uncertainties about the
input distribution affect this probability.
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Toulouse, France ]
[ jonathan.mboko@onera.fr – ]

116



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

Surrogate GSA with categorical and continuous inputs.
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Many real-world problems combine qualitative and quantitative input features. To address these,
we perform Global Sensitivity Analysis in the presence of categorical (i.e. discrete valued) inputs
alongside continuous ones. The strategy employed is to treat each categorical combination or
state as a separate output in a multi-output Gaussian process (MOGP), using an RBF kernel for
continuous inputs. Sobol’ indices are extended to assess the influence of continuous inputs on the
correlation between categorical states. This in turn is related to the influence of the categorical
state on the Sobol’ indices of the output. In this way one may effectively consider cooperation
between categorical and continuous inputs to influence the output. The possibility of multi-task
learning, where different categorical states inform each other via the MOGP is investigated, and
its effect on GSA is outlined.

Applications are presented to engineering problems, such as a synthesis where certain chemical anal-
yses may fail under some conditions, or certain categorical combinations have only been sparsely
investigated as they are considered unpromising. An important application is to syntheses where
the categorical inputs are the choice of ingredients or conditions, recently explored using a related
approach [1].

The ultimate benefit of GSA is often to reduce the number of inputs in order to aid experimental
design and optimisation of the synthesised material. The appoach outlined here is particularly
suited to situations where training data is sparse, and must be utilised to maximum effect, for
example in pharamaceutical production where syntheses may be extremely expensive. This should
also prove useful in wider applications, not related to synthesis.

[1] Y. Comlek, L. Wang, and W. Chen, “Mixed-Variable Global Sensitivity Analysis for Knowledge
Discovery and Efficient Combinatorial Materials Design.”, ASME. J. Mech. Des., 146(5):1–10,
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This paper explores the integration of Sensitivity Analysis (SA) with ensemble weather forecasting
to improve uncertainty quantification (UQ) in Numerical Weather Prediction (NWP).

Ensemble weather forecasting plays a crucial role in meteorology by representing uncertainty
through multiple model simulations, accounting for variability in initial conditions, model
dynamics, and external influences. Widely used techniques, such as Stochastically Per-
turbed Parameterization Tendencies (SPPT) [Buizza et al., 1999, Leutbecher and Palmer, 2008],
Stochastically Perturbed Parameterization (SPP) [Ollinaho et al., 2017], Ensemble Data As-
similation (EDA) [Houtekamer and Mitchell, 1998, Bonavita et al., 2012], Singular Vectors (SV)
[Buizza and Palmer, 1995] have been fundamental in addressing uncertainties within ensemble
forecasting frameworks. However, these methods often operate under assumptions of linearity
and Gaussian error distributions, which limit their capacity to fully capture the non-linearities,
interdependencies, and broader range of uncertainties inherent in complex atmospheric systems.

Sensitivity analysis [Saltelli, 2008, Saltelli et al., 2004, Iooss and Lemâıtre, 2015] offers a robust
and complementary technique to overcome these limitations by systematically identifying, ranking,
and quantifying the influence of input parameters on model outputs. Unlike traditional ensemble
methods, SA provides a structured approach for understanding how variations in model parame-
ters impact forecast outcomes, enabling a more comprehensive analysis of non-linear interactions
and parameter dependencies. Sensitivity analysis has long been recommended and widely applied
for UQ across various scientific domains, including hydrological modeling [Ratto et al., 2007] and
environmental studies [Saltelli et al., 2004]. These applications demonstrate the effectiveness of
global sensitivity analysis in exploring the multidimensional space of the input parameters and
capturing the effects of non-linearity and of interactions among parameters in the model, thereby
improving model evaluation and calibration. Its successful implementation in other fields empha-
sises the potential benefits of integrating SA into ensemble weather forecasting, enhancing the
robustness and accuracy of uncertainty representation in meteorological models.

This paper explores the integration of SA into ensemble weather forecasting, demonstrating
how this synthesis enhances UQ in NWP models. By integrating SA into ensemble forecast-
ing, we discuss the representation of multivariate uncertainties, how to improve the accuracy
of parameter perturbations, and refine probabilistic forecasts. We detail the current ensem-
ble techniques, emphasising how SA can inform the adjustment of perturbation strategies and
better capture non-Gaussian error structures. Additionally, SA enables a more accurate rep-
resentation of joint distributions [Mara et al., 2015], leading to improved identification of criti-
cal thresholds and tipping points in model behaviour, particularly for extreme weather events
[Bousquet and Bernardara, 2021, Allen et al., 2017]. The integration of SA has the potential to
refine stochastic perturbation techniques, such as SPPT and SPP, by providing evidence-based
parameter ranges and interdependencies. By incorporating SA, meteorologists can better capture
the complexities of atmospheric systems, advancing the accuracy and reliability of probabilistic
weather predictions. This work emphasises the need for adopting SA techniques in ensemble fore-
casting to achieve more comprehensive uncertainty quantification in NWP models while offering
meteorologists a more nuanced understanding of model uncertainties, and improving the commu-
nication of forecast uncertainty to stakeholders.
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The use of pesticides poses major challenges to sustainable agriculture and water quality, necessitat-
ing the development of risk assessment tools to better understand and manage these impacts. One
such tool is the PESHMELBA model [1] (Pesticides and Hydrology: modeling at the catchment
scale), a distributed, physically based model that integrates water and pesticide transfer processes
at the catchment level. This model enables the comparison of different landscape management
scenarios and their effects on water quality.

Before employing it as a decision-making tool, it is essential to properly quantify its uncertainties,
coming from various sources. While parameter uncertainty has been increasingly studied, forcing
uncertainties (e.g., rainfall/evapotranspiration forcings, or pesticide application dates and quan-
tities) are often overlooked. The uncertainty in hydrological data used for forcing input directly
impacts model simulations and further decision-making [2], but it also has indirect impacts when
used in the process of parameter calibration [3]. Ignoring forcing uncertainty can result in biased
parameter values or sensitivity indices that are only valid in one forcing condition and cannot be
extrapolated to different forcing conditions [4].

We investigate how the uncertainty in forcing data propagates to the model output, particularly
how it affects the sensitivity of model outputs to their parameters. Additionally, we examine how
forcing uncertainty influences parameter calibration.

First, we perform a global sensitivity analysis (GSA) to identify the main parameters contributing
to output uncertainty and focus on their calibration [5]. An operational approach [6] to GSA is
employed. This approach considers the different nature in the variability of the forcing inputs and
the parameter values, i.e. it distinguishes the stochastic (and thus uncontrollable) variability of the
forcings from the variability of the model parameters’ possible design values, thus demonstrating
how the forcing uncertainty impacts the model’s sensitivity to parameter values.

We then assess the advantages of a robust approach to parameter calibration for the PESHMELBA
model. As the uncertainty of forcing inputs highly depends on the specific problem and model, we
opt for a methodology that does not assume a particular structure of the forcing inputs. Rather,
the methodology relies on a sufficiently large set of realizations that represent the forcing uncer-
tainty. To manage the high computational burden of robust calibration methods and ensure the
non-intrusiveness in the forcing input space, we employ a polynomial chaos-based metamodel for
stochastic simulators based on [7], which approximates the response surface across parameters
while emulating the uncertainty of the forcing input.

Two case studies are considered, each with varying model outputs and sources of forcing uncer-
tainty, representing increasing complexity in model processes and scale of application:

• the first case examines the soil moisture profile of a single catchment plot. Here, forcing
uncertainty arises from measurement errors and the spatial heterogeneity of a rainfall event.

• the second case focuses on the daily pesticide concentration at the river outlet. In this
scenario, forcing uncertainty stems from the lack of knowledge regarding the exact dates
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of pesticide treatment. This case study is more complex due to the intricacies of pesticide
transfer processes and spatial interactions between catchment plots.

Our GSA results demonstrate that the sensitivity of model outputs to parameters varies across the
domain of forcing uncertainty. We find that rainfall uncertainty leads to varying sensitivities of soil
moisture to hydrodynamical properties at different horizon depths. Meanwhile, varying pesticide
application dates by just a few days impacts the dominant processes of pesticide transfer. This
results in a greater influence of parameters governing surface runoff when pesticides are applied
prior to heavy rainfall events.

Comparing robust parameter calibration with classical calibration, evaluated on an unseen set of
new forcing data, reveals improvements in robustness criteria for moisture profile parameter cali-
bration. However, in complex cases, the difficulty of fitting a stochastic emulator that accurately
captures the original model behavior increases rapidly with the growing interactions between forc-
ings and model parameters. This raises questions about the scalability of the presented approach
in complex studies.
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Decision sensitivity measures, specifically information values, quantify the effect of input uncertainty 
on the optimality of a decision taken based on a predictive model. The information value of an input X 
is the expected value of partial perfect information associated with making a better decision when 
learning X. The information value has become popular mainly in the field of medical decision-making, 
but it is also a natural sensitivity measure in engineering, where models serve the purpose of making 
decisions about design, operation, retrofitting, upgrading or decommissioning of systems. In this 
contribution, we focus on decision sensitivity for engineering applications and discuss the modeling of 
decisions and the associated utility function (or scoring rule). We then focus on the separation of 
aleatory and epistemic uncertainty in engineering applications and investigate the implications of this 
separation on the interpretation of the sensitivity measures. We also discuss strategies for 
computationally efficient sampling-based estimation of the information values under aleatory and 
epistemic uncertainty. We illustrate the theory using two real-life applications concerned with the site 
selection for a nuclear waste deposit and the optimization of flood protection measures. 
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In regression analysis, importance measures are effective tools for feature selection and model interpreta-
tion, allowing for the ranking of the most influential regressors. In particular, variance-based importance
measures (VIMs) are a prominent topic in both fields of statistics and global sensitivity analysis. This
is due to their accessible interpretation as variance shares of the explained variable. As proposed in [1],
this work focuses on a linear regression model between an explained real-valued output random variable 𝑌
and 𝑑 explanatory input random variables X = (𝑋1, . . . , 𝑋𝑑): 𝑌 = Xβ + 𝜀 with β ∈ R𝑑 is an unknown
vector of coefficients and 𝜀 is a centered Gaussian random error. It addresses some of the practical chal-
lenges that arise when the component of X are dependent inputs and the input dimensionality 𝑑 is large.
Specifically, the goal is to discuss the formulation and interpretation of Johnson indices [2, 3], which have
empirically demonstrated their value both in high-dimensional contexts and their ability to approximate the
not so well-known LMG indices [4].

We start by providing some theoretical elements and interpretations to define the context in which Johnson
indices can be used in comparison to LMG and PMVD indices [5]. In the literature of linear regression
analysis, VIMs are built from the decomposition of the coefficient of determination 𝑅2 which quantifies the
percentage of output variability explained by the model. A VIM associated with a regressor is thus defined
as its proportional contribution to 𝑅2, accounting for both its direct effect (correlation with𝑌 ) and combined
effects with other variables [6]. Various 𝑅2 decomposition strategies have thus been proposed, leading to
different interpretations. The choice of the 𝑅2 decomposition suitable for defining the VIM can then be
established based on desirability criteria:

• (C1) Proper decomposition: the sum of all shares should be equal to the 𝑅2;
• (C2) Nonnegativity: all shares should be nonnegative;
• (C3) Exclusion: if 𝛽 𝑗 = 0, then the share of 𝑋 𝑗 should be zero;
• (C4) Inclusion: if 𝛽 𝑗 ≠ 0, then the share of 𝑋 𝑗 should be nonzero;
• (C5) Grouping: all shares should tend to equate for highly correlated inputs.

The first four criteria were defined by Gromping [7], while the last one relates to regularization techniques
[8]. Criteria (C1) and (C2) are essential for interpreting VIMs as a percentage of 𝑅2. Criterion (C4) is also
fundamental to highlight inputs with direct influence. However, (C5) contradicts the exclusion property
(C3). If the interpretation is focused on the direct influence of the inputs on the model output, then (C3) is
appropriate; if the correlations among data can carry necessary information for the interpretation, (C5) is
relevant instead. In this context, the LMG and Johnson indices favor the (C5) criterion whereas the PMVD
indices (C3). In fact, both methods aim to decompose the 𝑅2, but they differ in how they average the
marginal contribution of each variable across all the permutations. LMG uses an arithmetic average while
PMVD weights these contributions based on the proportion of variance attributable to each variable.

To better understand and illustrate the concept of multicollinearity, we also use Venn diagrams on a two-
input regression model (𝑑 = 2), see Fig. 1. The Venn diagrams are formed by three circles associated with
the variances of 𝑌 (in purple), 𝑋1 (𝜎1 in blue) and 𝑋2 (𝜎2 in yellow), by two overlapping area measuring
the additional explanatory power of 𝑋1 (𝑎) and of 𝑋2 (𝑐), and by the area representing the combined effect
of the inputs on the model 𝑌 (X) (𝑏). We prove, in particular, (with a different demonstration from the
one of [9] which relies on geometrical arguments) that there is an equivalence between the LMG and the
standardized Johnson indices in the case of a two-input model [1].

Finally, we apply these indices to the well-known dataset of the R package AmesHousing, which contains
79 features describing house sale prices in Ames, USA [1]. The computational cost of the LMG and PMVD
indices is exponential with the number of input variables. It appears impossible to calculate them for the
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entire set of input variables. This example shows that there are cases where it is impossible to determine
the LMG and PMVD indices, and where it is necessary to use approximate methods to conduct sensitivity
analyses. In this case, we calculate the Johnson and the well-known SRC2 indices [1] for the set of 34
quantitative variables. We then determined the 10 most influential variables and we determine all the VIMs
for these 10 variables (see Fig. 2).

Figure 1: Interpretations of VIMs: Venn diagrams and desirability criteria. Figure 2: Results on the Ames housing dataset.
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Despite the numerous advances and insightful proposals in the recent years, estimation of Sobol’
indices at any order d (with particular case total indices) is still a challenge. When it comes to
theoretical convergence guarantees, two classes of methods are of particular interest. On the one
hand, the class of Pick Freeze estimators allows to estimate Sobol’ indices at rate

√
n for any d with

minimal assumptions on the computer code, but requires a sample with highly specific structure.
On the other hand, local-averaging estimators such as kernel or nearest neighbor estimators can
handle any vanilla n-sample of the inputs/output pair (given-data context), but the

√
n-parametric

rate of convergence was only proved for d ≤ 3 for nearest neighbors. In addition, such estimators
suffer in practice from large bias and variance.

In the present work, we introduce a new class of kernel estimators which enjoys a central limit
theorem and asymptotic efficiency for estimating Sobol’ indices at rate

√
n for any d from a vanilla

n-sample, unlike all previous works. From a broad perspective, our approach consists of three
main ingredients. First, we build upon the explicit expression of the efficient influence function of
Sobol’ indices which depends on the unknown regression function, and propose a plug-in estimator
where the regression function is estimated with a specific kernel estimator, in the same spirit as [1].
Second, for the latter and to ensure

√
n-consistency, we use high-order kernels as classically done

in nonparametric regression. Finally, it is crucial to handle boundary effects inherent to kernel
estimation procedures: we adapt here recent mirror-type transformations introduced in [2,3]. All in
one, we introduce two different estimators that are proved to be asymptotically normal and efficient
for Sobol’ indices at any order. From a numerical perspective, we conduct extensive comparisons
and discuss stability of high-order kernels, showing that one of our estimators performs remarkably
well on standard sensitivity analysis examples.
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Time-variant reliability analysis involves the estimation of the reliability of a structural system 

accounting for the time-varying nature of structural parameters and applied loads. This contribution 

studies the application of global reliability sensitivity measures to time-variant reliability analysis and 

discusses the estimation of these sensitivity indices with the first order reliability method (FORM). We 

focus on time-deteriorating systems and in this context study two approaches for time-variant 

reliability analysis: one based on approximating the first passage probability with the probability of a 

series of time interval failure events and another that expresses the failure event through an auxiliary 

limit state in terms of the conditional failure probability given the structural parameters. Estimation of 

the reliability sensitivity indices for the two considered approaches can be performed through 

leveraging the FORM approximations introduced in [1, 2]. We demonstrate the behavior of these 

approximations through numerical examples involving deteriorating structural systems. 
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This work tackles the challenge of chance-constrained optimization under uncertainties, which
entails significant computational burdens in practical applications (such as the robust design of an
electrical machine). Such robust optimization problem can be defined as follows

x∗ = argmin
x∈K

E[f(x, U)] where K = {x ∈ X ⊂ Rd s.t. P[g(x, U) ≤ 0] ≥ α}

with x the vector of design variables and U the vector of uncertain variables.

Since the underlying models of f and g usually are costly computer codes, classical methods are
out of the table as they often require numerous evaluations of these codes.

Thus, we use instead Bayesian Optimization and, more specifically, rely on EFISUR [1], an adapta-
tion for constrained Bayesian optimization in presence of uncertainties. First, f and g are modeled
using Gaussian process regression in the joint design and uncertain variable space and an acqui-
sition criterion that considers both the average improvement in the objective function and the
reliability of the constraints is defined. However, high dimensionality in either the design space or
the uncertain parameter space can pose challenges due to the complexity of the optimization steps
and Gaussian Processes (GPs) fitting.

Among all the different strategies to deal with the limitations of EFISUR in high dimensions,
we propose an adaptation through a dimension reduction of the search space by incorporating
Sensitivity Analysis in the sequential approach. Sensitivity analysis approaches allow to understand
how each input affect the outputs and to mitigate the effects of the curse of dimensionality by
retaining only the influential variables. The first important aspect of this work is the development
of new sensitivity indices in order to deal with uncertain variables. Indeed, instead of considering
how the inputs affect a scalar-valued output, which is already widely addressed in the literature, we
measure the influence of uncertain variables by their impact on a set-valued output characterized
as

U = (U1, . . . , Up) −→ Γ = {x ∈ X , f(x, U) ≤ q and g(x, U) ≤ 0}.

We derive kernel-based sensitivity indices using an appropriated kernel to compare sets with the
necessary properties in [2]. Other approaches were also considered on an industrial test-case for
comparison [3].

Using existing goal-oriented indices for deterministic variables and these new indices for uncer-
tain variables, different methodological developments based on various strategies of incorporating
sensitivity analysis into EFISUR have been proposed. They will be presented in this work, with
applications on comprehensive toy functions and a real-life test case of the robust optimization of
an electrical machine.
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For anyone wishing to perfom GSA1 on the output of a black-box model, the ANOVA2 framework,
relying on the estimation of the first-order and total-order Sobol’ indices, appears to be the most
enticing solution, since it combines both simplicity and explainability. Indeed, each subset of input
variables is assigned a specific share of variance equal to the variance induced by the associated
sub-function in the Sobol’-Hoeffding decomposition. Due to their nice mathematical properties,
the total-order Sobol’ allow to perform both the ranking and screening of input variables, making
them appear as some of the most attractive sensitivity measures. Unfortunately, when the output
variable is computed by a highly expensive computer code, the simulation budget required to
achieve an accurate estimation of Sobol’ indices is often prohibitive, unless constructing a surrogate
model, which is a challenging task in high dimension. In the light of this problem, the sensitivity
measures based on the HSIC3 offer a great alternative, as they are particularly easy to estimate,
even when the available data comes from a small Monte Carlo sample. However, while HSIC indices
are well adapted to screening, they are not recommended for ranking purposes, as comparing them
to one another is not mathematically rigorous.

In this context, the HSIC-ANOVA approach is a cutting-edge kernel method seeking to strike a
harmonious balance between Sobol’ and HSIC indices [1]. The key idea of this breakthrough is
to handle the input variables with ANOVA kernels (instead of more usual kernels such as the
Gaussian ones). This specific choice allows to derive a kernel-based ANOVA decomposition in
which the output variance is replaced by the HSIC between the input vector set and the output
variable. Unlike standard HSIC indices, for which there is no notion of order, the HSIC-ANOVA
decomposition enables the definition of kernel-based sensitivity indices at all orders, particularly
at the first and total orders, in the same spirit as Sobol’ indices.

To obtain such an ANOVA decomposition, the kernel selected for each input variable must be
ANOVA, meaning that is it must satisfy an orthogonality condition with respect to the input
marginal distribution. Unfortunately, for most parametric families of distributions encountered in
practice, it is pretty hard to find an ANOVA kernel which is also characteristic. The only exception
is the standard uniform distribution, for which there are many possible candidates in the literature,
including the so-called unanchored Sobolev kernels [1]. In almost all other cases, it is advisable to
orthogonalize the Gaussian kernel, but this implies an extra step of numerical integration whose
complexity will increase linearly with sample size.

When first introduced, the HSIC-ANOVA decomposition was praised for two main reasons:

(a) the fact that all HSIC-ANOVA terms can be accurately estimated from a single sample of
input-output observations, regardless of the dimension of the input space ;

1GSA: Global Sensitivity Analysis
2ANOVA: ANalysis Of VAriance
3HSIC: Hilbert-Schmidt Independence Criterion
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(b) the fact that the HSIC-ANOVA measure may be used as a cost function for Shapley values,
thus leading to HSIC-Shapley effects, a collection of importance measures combining most
expected properties in GSA.

However, a grey area persists around the HSIC-ANOVA framework, hindering its wider adoption
as a reference methodology in GSA. In fact, there are two main areas for improvement.

(P1) An obvious limitation of HSIC-ANOVA indices is their lack of interpretability, which is partly
due to the fact that the HSIC-ANOVA decomposition is not a direct consequence of the
Sobol’-Hoeffding decomposition. In particular, it is not clear which kind of extra information
is captured by the total-order indices (compared to their first-order counterparts). This lack
of transparency is a serious issue, as engineers are unlikely to apply a methodology without
having a thorough understanding of it.

(P2) The question of how to use HSIC-ANOVA indices for screening was not investigated in [1].

Our talk aims to provide some answers to these two problems. For the sake of simplicity, the
discussion is limited to the case where the input variables are mutually independent and all follow
the standard uniform distribution.

In response to (P1), the first part of the talk will reveal the inner workings of the HSIC-ANOVA
methodology and will establish a connection between the kernel feature maps and the dependence
patterns captured by the two types of HSIC-ANOVA indices. The key to greater interpretability is
to express the HSIC as a sum of squared covariances over the entire collection of random features
induced by the input and output kernels. In fact, adopting this viewpoint on the HSIC-ANOVA
decomposition allows to clarify which random features are captured at each order. Among other
benefits, this change of perspective will guide the construction of analytical test functions for which
HSIC-ANOVA interactions are controllable, ranging from negligible to dominant contributions.

In response to (P2), the second part of the talk will promote HSIC-ANOVA indices as a promising
solution for kernel-based independence testing. The starting point is to realize that the unanchored
Sobolev kernels are characteristic [2]. This ensures both the first-order and total-order indices
characterize independence. A straightforward strategy to test independence is to apply existing
methods for HSIC indices to the numerators of the first-order HSIC-ANOVA indices, because they
are simply HSIC indices computed with ANOVA kernels. Another possible strategy is to develop
specific test procedures for the total-order HSIC-ANOVA indices. It will be shown that three
different test procedures can be employed, each suited to a specific range of sample sizes. Finally,
an extensive simulation study will reveal that testing independence with the total-order indices
can be more powerful, especially when HSIC-ANOVA interactions come into play.
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Prioritizing environmental sustainability is a core strategy for securing the health and prosperity
of modern societies. A goog practice for a company to identify, manage, monitor and control its
environmental impact is to use an environmental management system (EMS), such as the interna-
tionally recognized standard ISO 14001, based on environmental management problems proposed
and solved by researchers. In the present work, we study the environmental management problem
proposed by Haurie & Krawczyk [1] where they consider the pollution by multiple economic agents
located along a river. An administrative authority aims to induce competing industrial agents
to some sort of cooperation which would result in the satisfaction of the common environmental
constraints.

To answer this question, Haurie & Krawczyk propose a (static) non-cooperative game which allows
to set a Pigouvian tax for industrial agents in practice. Regarding non-cooperative games, two
types of models have been considered in competitive markets: a) the Cournot oligopoly where
industrial strategies are based on the choice of business volume and b) the Bertrand oligopoly
where agents set prices. Haurie & Krawczyk assume industrial agents behave like the Cournot
oligopolists where they set economic level xj for j = 1, . . . , J . The equilibrium level x⋆ is a Nash
equilibrium. That is, with payoff functions Oj and action set Xj , a Nash equilibrium is a vector
x⋆ = (x⋆

1, . . . , x
⋆
J) such that for all j = 1, . . . , J , x⋆

j solves the subproblem

sup
xj∈Xj

Oj(xj , x
⋆
−j),

where xj and x−j denote the action of player j and the other players’ actions, respectively. The
computation of equilibrium x⋆ for the model proposed by Haurie & Krawczyk relies on numerical
methods, see [1].

For practical use of approach proposed by Haurie & Krawczyk, one must not only compute the
equilibrium x⋆ but also measure how it is sensitive with respect to objective parameters Oj . For
a three-player game with two levels of contraints, we count 18 parameters for which we want to
understand the sensivity. Using [2], we propose an in-depth analysis of the proposed game. We
compare our approach with the current economics standard known as “comparative statics”.
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Computer models are commonly used in many areas of science and engineering to simulate, analyze,
understand and predict complex physical systems, such as nuclear power plants. These models,
which are designed to faithfully represent the underlying physical phenomena, often involve a
large number of uncertain physical parameters. Traditionally, a distinction is made between two
types of uncertain parameters (aleatoric or epistemic), depending on whether the uncertainty arises
from irreducible natural variability or a potentially reducible lack of knowledge. Among epistemic
uncertainties, some can be reduced and quantified by a model calibration process based on available
observed data (experiments), such as deterministic calibration or Bayesian calibration [4]. The
latter type of calibration is particularly useful for quantifying and reducing epistemic uncertainties,
as it provides probability distributions for the parameters to be calibrated [5]. In support of
the calibration process, it can be very useful to perform a preliminary global sensitivity analysis
(GSA) in order to quantify how much each source of uncertainty contributes to the variability
of the quantity of interest. As will be highlighted in the presentation, it turns out that the
sensitivity indices based on the Hilbert-Schmidt Independence Criterion (HSIC), introduced by
[2] and promoted by [7] for GSA purposes, are particularly suited to parameter screening in the
context of Bayesian calibration. We will see that HSIC indices actually keep all their promises and
clearly stand out from other competing sensitivity measures. However, beyond simply promoting
HSIC indices, which are now widely used in many application fields, the main objective of this work
is to develop a GSA methodology for the Bayesian calibration of chained computer models. More
specifically, in the application under consideration, the goal in fine is to identify the calibration
parameters θ of a downstream model conditionally on the uncertainty affecting the parameters λ
of an upstream model. Consequently, the main challenge for the GSA is to incorporate the residual
uncertainty of λ into the definition and estimation of HSIC indices. To deal with this specific bi-
level uncertainty framework, addressing the uncertainties conveyed by both θ and λ, purpose-built
sensitivity measures are introduced and several estimators are derived for them. We will show
that they are (asymptotically) unbiased, consistent and have Monte Carlo-like convergence rates.
Importantly, their estimation does not require any extra computational load, since the estimates
can be directly computed from the Monte Carlo samples built for the conditional model calibration
task. Like HSIC indices, the key advantage of these indices is the ability to perform independence
tests and make decisions based on p-values, rather than subjective criteria [1,6]. Finally, our
approach is applied in nuclear fuel simulation. In this particular industrial context, the challenge
is to find the most influential calibration parameters θ of a downstream fission gas behavior model
while taking into account the uncertainty of the conductivity λ of an upstream thermal model [3].
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Abstract 

In this PhD thesis, we are interested in studying shock dynamic phenomenon 
(unstationnary). More particularly, we focus on experiments in which water drops are hit by a shock 
wave. After the shock has passed, the drops are subject to strong deformations and transformations. 
Several physical processes are taking place : the mother drop can break up into daughter drops (it is 
called the « break up » phenomenon) ; the drops can also go through surface alterations (it is called 
the « stripping » phenomenon) which produce a fog making the observation of the drops difficult. 
These experiments are meant to improve our knowledge on models, some of which relatively simple 
whereas some have to be implemented into CEA codes to be compared. In practice, a lot of 
experiments are done, for several sizes of drop and for several Mach numbers (several shock speeds). 

The objective of the thesis is to exploit these experiments, to calibrate the parameters of the 
CEA models and to select the more appropriate one.  

Figure 1.a presents images of a film at different times : at time 0𝜇𝑠, the drop is on the left 
hand side, put on two threads. At the next time, the shock wave (vertical bar at the center of the 
image) has hit the drop and the fog (black mass) is moving and being distorted. At time 251𝜇𝑠, only 
the fog is left, hiding the mother drop and potentially the daughter drops. The extraction of data from 

these films is not always easy. To give an idea, let’s focus on the points of beginning (𝑡 → 𝑥𝑚(𝑡)) and 

end (𝑡 → 𝑥𝑀(𝑡))of the fog : if the beginning of the fog is easily identifiable, the end is subject to 

uncertainties (commonly accepted by the experts). The extraction must take into account those 
uncertainties. 
 A first part of the thesis consists in extracting the necessary quantities for calibration [1]. 
Only one film is presented here but we have to be able to process many more and so to automate the 
extraction. To do so, we exploit the strength of supervised neural networks.  The figure 1.b shows the 
prediction of the network for one image and the result of the extraction. 𝛼   is used as a kind of 
measure for uncertainties : it is a threshold to select the red pixels from which the more at the left is 
𝑥𝑚(𝑡, 𝛼), an extraction of 𝑥𝑚(𝑡) and the more at the right, 𝑥𝑀(𝑡, 𝛼), an extraction of 𝑥𝑀(𝑡).The result 
is presented in figure 1.c : 𝑡 → 𝑥𝑚(𝑡, 𝛼) for 𝛼 ∈ {0,⋯ ,255} is used to extract 𝑡 → 𝑥𝑚(𝑡). In the same 
manner, 𝑡 → 𝑥𝑀(𝑡, 𝛼) is used to extract 𝑡 → 𝑥𝑀(𝑡). 

(a)  

 

(c) 

 

(b)

 
Figure 1: (a) Images of a film of a shocked droplet leading to a fog, at different times (b) Pre-

processing of an image (c) Extraction with uncertainties of 𝑡 → 𝑥𝑚(𝑡) and 𝑡 → 𝑥𝑀(𝑡). 
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Amongst the different models to be calibrated and studied during this PhD thesis, the 
simplest one is a model of 𝑥𝑚 . We focus on this model in three parts (constant, parabolic and linear 
in time) in the following paragraph:  

𝑥𝑚(𝑡, 𝑥0, 𝑡𝑑, 𝑡𝑔, 𝑎) = 𝑥0 + 𝑎 [(
1

2
(𝑡2 − 𝑡𝑑

2)) 1𝑡𝑑≤𝑡≤𝑡𝑔 + (𝑡𝑔(𝑡 − 𝑡𝑔) +
1

2
(𝑡𝑔

2 − 𝑡𝑑
2)) 1𝑡≥𝑡𝑔]. (1) 

In the above expression, 𝑡𝑑 is the time at which the shock wave goes through the drop, 𝑡𝑔 the 

time at which the fog is moving at gaz speed, 𝑥0 the position of beginning of the drop at time 0, before 

the shock wave has passed, 𝑎 the acceleration, closely related to the shock strength, the mass of the 

drops, etc. We want to calibrate the parameter 𝜂 = (𝑥0, 𝑡𝑑, 𝑡𝑔, 𝑎). 

To do so, the Bayesian framework [2,3,4] offers the possibility to consider both the 
knowledge brought by the experimental measures through the likelihood and the a priori knowledge 
brought by the experts on 𝜂  through the prior density. From these, the posterior density can be 
expressed up to a positive factor. The best estimator for 𝜂, in the sense of the quadratic loss function 
is the a posteriori mean. As we cannot get it by classical means as optimization algorithms (contrary 
to other estimator as the a posteriori maximizer), we rely on MCMC sampling algorithms to sample 
the posterior density and then calculate an approximation of the a posteriori mean. 
 

 
Figure 2: Bayesian calibration of 𝑥𝑚model by MCMC algorithm. 

 
                The figure 2 shows the experimental measures for a given 𝛼, the model taken at the empirical 
average of the MCMC samples and at some samples of the MCMC chain. We will show that our simple 
model for 𝑥𝑚(𝑡) is certainly accurate enough. These results are preliminary ones: they do not yet take 
into account all the information extracted from the film, especially in terms of uncertainties. It is not 
the only challenge, as we have other films which we can use to calibrate the parameters. Later on 
during the thesis, we will tackle the question of selecting the best model via model selection. 
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Abstract 

In today's data-driven world, decision-making increasingly relies on complex simulations that bridge 
theoretical models and real-world applications. These simulations are indispensable in fields ranging 

from scientific research to policy and management [1]. However, they present significant 
computational challenges, particularly due to intricate internal interactions and high-dimensional 

parameter spaces. Efficient Global Optimization (EGO) [2], also called simulation optimization, has 

emerged as a prominent solution to optimize these simulations within constrained budgets, with 
applications spanning machine learning [3], healthcare system [4], material science [5], and beyond. 

EGO's effectiveness lies in its integration of Kriging, a surrogate modelling technique, and Expected 

Improvement (EI), a criterion designed to balance exploration and exploitation during optimization. 
Despite its success, EGO faces challenges, particularly in managing the trade-off between exploration 

and exploitation and in the growing interest in replacing Kriging with alternative machine learning 
surrogate models. 

 

This study focuses on two primary challenges of EGO: the infill criterion and the use of alternative 
surrogate models. We analyze classical infill criteria, such as EI and Expected Regret (ER) [6], under 

different assumptions, and visualize their performance using toy examples. Furthermore, we 
examine the literature on substituting Kriging with machine learning models, highlighting a common 

issue—underestimation of exploration, especially when assumptions are absent. We systematically 

categorize existing methods based on how they guide exploration, demonstrating that many rely on 
the distance between candidate points and training data. Our findings provide valuable insights into 

improving exploration in EGO frameworks, contributing to future research in simulation 

optimization. 
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Abstract

Clogging of steam generators (SGs) in pressurized water reactors is a complex phenomenon that
develops over extended operational periods. This deposit may affect the SG in several ways:
for instance, through a modification of the heat transfer between both primary and secondary
circuits, or through vibrations induced by the flow redistribution. Therefore, the clogging rate
τc is periodically measured during outages and, if necessary, expensive chemical cleaning can be
performed. A good preventive maintenance planning is thus crucial for EDF, which explains the
R&D effort to better understand this complex phenomenon and to estimate a robust Remaining
Useful Life (RUL) [1].

To improve predictions for maintenance scheduling, a physical model and the computer code
THYC-Puffer-DEPOTHYC [8, 2] have been developed, simulating clogging kinetics over long
SG operational periods. Previous work [3] has identified several uncertain input variables of this
code, and sensitivity analysis was conducted to evaluate their impact on τc over the simulated
period of time. One such influent variable is the physical model calibration parameter. It has also
been observed that the dispersion of the clogging trajectories with respect to the probabilistic
modeling used proved that the RUL estimation for the SG using the simulation code is unreliable.

Field data on clogging for specific SGs are typically collected through televised camera inspec-
tions, though this data is often limited, or of low quality therefore often unreliable. To enhance
the available dataset, EDF R&D has developed statistical regression strategies, based on oper-
ational data [7].

We propose a hybrid approach to improve the predictive accuracy of the computer model by
applying Bayesian calibration [5, 4] to the calibration parameter across different operational
scenarios, utilizing various types of clogging field data. This method enables a more precise
estimation of the asset’s RUL, aiding in prognostics and maintenance planning. We also explore
an integration method [6] within the calibration process for taking into account the uncertainty
of the other parameters.
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Abstract

Micro-swimming is emerging as a significant research area due to its potential applications, par-
ticularly in the medical field for tasks like cargo transport and drug delivery [1]. A key factor
in the performance of micro-robots is the optimization of their shape, which directly influences
their motion.

This poster investigates shape optimization of micro-swimmers with one or two helical flagella.
The Boundary Element Method (BEM) is used to simulate the dynamic [5]. Due to the com-
plexity of our model, we focus on parametric shape optimization by using Bayesian Optimization
(BO), which overcomes the challenges of computing gradient, constraints treatment and reduce
the number of costly function evaluations inherent in swimmer dynamics. Additionally, we
employ the Free-Form Deformation (FFD) technique [4], which provides a sufficiently complex
admissible shape space. This is integrated with the Scalable Constrained Bayesian Optimization
(SCBO) method [3], ideal for high-dimensional constrained optimization problems.

1.557 µm

1.480 µm

1.480 µm

J   =  J   = 11| | 2| |

Figure 1: Reference swimmer with one helical flagellum.

The optimized designs are compared to biological swimmers, revealing a wide variety of efficient
swimming strategies, including both pushers and pullers as can be observed in Figure 2.

1
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U1

Figure 2: Time-averaged velocity field around optimized swimmers: (first) optimized monoflag-
ellated swimmer for J1, (second) optimized monoflagellated for J2, (third) optimized biflagellate
for J1, and (fourth) optimized biflagellate for J2. The fluid streamlines in the plane y = 0 are
depicted in white. The colormap represents the fluid velocity along e1.

Numerous results on the controllability of certain micro-swimmers, such as the Golestanian
three-sphere swimmer or N-link models, have been achieved. However, accounting for walls
and obstacles remains a significant challenge in both the development of micro-robots and the
study of microscopic living organisms [2]. Hence current works focus on improving the control
of micro-swimmer trajectories using novel Bayesian optimization techniques.
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Interval-based sensitivity is an efficient global sensitivity analysis method that is based on interval
arithmetic [1]. It works by partitioning the input of interest into sub intervals, while the other
inputs are intact intervals. The method is non-probabilistic and can be used to calculate the
sensitivity of a function without relying on sampling, which might not capture the whole input
space. For example, methods based on sampling need the definition of a probability distribution,
which is often chosen arbitrarily. Interval sensitivity only need specification of the input space
where the sensitivity is to be calculated [2].

Global sensitivity analysis can be an effective tool against over parametrization in neural networks.
Over parametrization arises when a trained model has too many units or layers and can cause issues,
including over-fitting, poor explainability, suboptimality, excessive memory usage, and more. Being
able to determine sensitivities towards the output and knowing if there are parameters/units that
have a negligible effect and as such can be discarded with no significant loss of performance can
be consequential, leading to leaner layouts and more explainable models. Deep learning models
are often deemed to be “black boxes” because of their nearly impenetrable mathematical layout.
Interestingly however, neural network models always imply a clear, albeit intricate, mathematical
function, whose expression is the composition of as many functions as there are layers. The
model’s mathematical expression can be obtained simply knowing the network’s architecture and
the trained weights and biases.

The network’s forward sweep is a function of the network inputs t, the weights W and biases b. In
this study, the inputs of the sensitivity analysis are W and b, so we can write the forward sweep
as follows y = f(t, x), where t is the network input and x ∈ Rd is the vector of sensitivity inputs
(network parameters).

Let f : Rd → R be the forward sweep that is a function only of the network parameters, and let
f be the its interval extension. Let [y, y]i,n be the output corresponding to the n-th subinterval
when only the i-th input is partitioned and the other intervals are intact, in notation [y, y]i,n =
f([x1, x1], ..., [xi, xi]n, ..., [xd, xd]). The interval-based sensitivity index, for the i-th input, is

Si = 1−
∑N

n [xi, xi]n · [y, y]i,n
[y, y] · [xi, xi]

, (1)

where N is the number of subintervals for the i-th partition, · is the interval multiplication used
to calculate the area of the (sub) rectangles, [xi, xi]n is the n-th subinterval for the i-th partition,
such that ∪N

n [xi, xi]n = [xi, xi], and [y, y] = f([x, x]) is the overall output range. The numerator
in (1) is the sum of all subinterval areas and the denominator is the area of the box enclosing the
xy graph. The sensitivity index Si, i = 1, ..., d ranges from 0 to 1. When Si = 0, the partitioning
has no effect, the numerator is equal to the denominator and so y has no functional dependence
on xi. When Si = 1, the sub rectangular areas are zero and so y has full functional dependence
on xi. It is worth noticing that this sensitivity indices are immune to the curse of dimensionality
because the partitioning takes place in one dimension

In the example, a neural network with two layers and five ReLU units is trained to approximate
the cubic function y = t3 − 3t2 + 2t + 5. Sensitivity indices are computed for each parameter in
the trained neural network, namely weights and biases W (1) ∈ R1×5, b(1) ∈ R5, W (2) ∈ R5×1,
b(2) ∈ R. The trained network settled on the following values: W (1) = ((−1,−1, 0, 1, 1)), b(1) =
(−1, 0, 0,−2,−3), W (2) = ((−13,−5, 0, 5, 13)), and b(2) = 5. The interval sensitivity is calculated
by intervalizing the inputs with a radius of ±1 for each parameter and a partition of N = 30. The
inputs are organized in the single vector x = (W (1), b(1),W (2), b(2)) of size d = 16.
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Figure 1: Sensitivity indices across network’s input t for x = (W (1), b(1),W (2), b(2)).

The neural network is trained to approximate the above cubic function, whose graph changes sign
at t = 1. All sensitivity indices reflect this displaying peaked values around it, as shown in Fig-
ure 1. We notice that the weights describing the negative values of the cubic function, namely

W
(1)
1 , b

(1)
1 , W

(2)
1 display high sensitivities for the negative values and zero sensitivities for the posi-

tive values. Similarly, the weights describing the positive values W
(1)
4 , b

(1)
4 , W

(2)
4 , W

(1)
5 , b

(1)
5 , W

(2)
5

show the same pattern for positive and negative values respectively. It is worth noticing that these
network parameters display zero sensitivities for the region of the space that they do not describe,
as expected. Other parameters have more complex dependencies on the output. This study has
also shown that for this particular example, the network is not over parametrized so, none of
the inputs can be ignored without affecting the network’s accuracy in approximating the cubic
function. The sensitivities can also be used to see what units are active in the regions of interest,
providing a diagnostic tool to reason about the parameters role in the overall architecture.
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In this work, we present a novel approach for selecting an optimal projection basis for time series
objects when using shapelet decomposition in a classification framework, leveraging a Lasso-like
high-dimensional non-linear feature selection method based on the Hilbert-Schmidt Independence
Criterion (HSIC)[1].

Time series analysis frequently faces challenges such as high dimensionality, autocorrelation, and
the difficulty of identifying key features that capture essential dynamics across different temporal
scales and phase offsets. To address these issues, we employ shapelet decomposition[2], a technique
designed to extract shape-based features from time series, preserving both temporal and frequency
information. The core idea is to represent a time series dataset through minimal distances to specific
representative patterns. Shapelet decomposition not only performs well compared to other state-of-
the-art methods for time series learning but also provides enhanced interpretability by identifying
patterns most relevant to the algorithm decisions, often offering insights into the physical meaning
behind these decisions.

Given the large number of possible shapes that can be extracted from a dataset, selecting the most
relevant shapes-i.e., the most informative projection basis-is crucial for numerical tractability. In
most prior works, this selection is achieved by iteratively optimizing the information gain among
a set of candidate patterns[3]. However, this approach has two main drawbacks: its high computa-
tional cost due to two nested optimization problems and the potential for selecting interdependent
features, leading to redundant information.

As an alternative, we propose selecting the optimal shapelet decomposition basis using HSIC
Lasso, a Lasso-like non-linear high-dimensional feature selection method that uses HSIC to identify
a sparse subset of the most informative and mutually independent features[4]. This approach
requires only a single optimization loop over the Lasso weights, making it a significantly more
computationally efficient alternative to the standard method. Additionally, as already mentioned,
the set of informative features selected by this approach is so that its components do not present
strong interdependence.

We validate our approach on both synthetic and real-world datasets, demonstrating its potential
to improve performance, scalability, and interpretability of time series classification models. Our
method offers a powerful tool for a wide range of application domains.
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Uncertainty quantification (UQ) in computer models has become increasingly important over recent
decades, particularly in the context of risk assessment. Numerous techniques exist to propagate
aleatory uncertainty, enabling the evaluation of risk-oriented quantities of interest, such as low
failure probabilities or high-order quantiles. However, these evaluations often rely on subjective
assumptions, including the choice of the input joint probability distribution, which may be based
on limited information. Therefore, input densities are tainted with epistemic uncertainties which
have to be taken into account, especially in risk or safety analyses. The core idea is to find a
relevant framework to model such uncertainties and to evaluate the robustness of the estimated
key risk measures (typically, failure probabilities, quantiles or any other risk measure) with respect
to these assumptions on the input probabilistic modeling.

On the one hand, a first solution is to adopt a “sensitivity analysis” viewpoint. More specifically,
robustness analysis (see, e.g., [1, Chap. 6]) offers a useful approach by quantifying how perturba-
tions in the assumptions impact the key quantities of interest on which industrial decisions are
based. Among several methods, the Perturbed Law-based sensitivity Indices (PLI) have been pro-
posed by [2] as a way of measuring the impact of perturbations of input densities (in a parametric
case) on a risk measure (e.g., a failure probability, a high-order quantile or a superquantile in [3]).
More recently, a novel formulation of these indices has been proposed in [3] by revisiting the inti-
tial formulation through an information-geometric approach, leading to a more sound and rigorous
framework for the input-perturbation statistical procedure.

On the other hand, the modeling, quantification and propagation is an old topic in the UQ commu-
nity. Several mathematical frameworks have been proposed and studied. Among others, two are of
specific interest here: the Optimal UQ framework [5] and the Info-gap framework [6]. In Optimal
UQ, epistemic uncertainties are handled through solving an optimization problem leading to max-
imizing a risk measure (e.g., a quantile) over a class of bounded distributions satisfying moments
constraints. As for Info-gap, it relies on maximizing the risk measure over increasingly large input
uncertainty domains. By looking at those formulations closer, it appears that methodological links
can be drawn from the two frameworks and the PLI-based robustess analysis described above.
More specifically, connections and differences can be derived from several keypoints such as the a
priori assumptions made, the way perturbations/optimization are solved as well as the final results
available at the end of each analysis.

Thus, the goal of this work is to exhibit, discuss and analyze these links both theoretically and
numerically, in the context of risk-oriented analyses. From a sensitivity analysis perspective, such
a work aims at pointing out the fruitful connections that handling “epistemic” or “second-level”
uncertainties impose between this field and the UQ practice in engineering. As a perspective, one
can wonder whether designing “optimal” sensitivity measures would be possible in order to assess
the robustess of any risk measure with respect to prior assumptions on the input probabilistic
model.
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To surrogate expensive computer simulations and calculate Sobol’ sensitivity indices, sparse regression-
based polynomial chaos expansions are a well-known tool. They represent the model in a basis of
multivariate polynomials which are orthogonal with respect to the distribution of the input param-
eters. Recently, another type of chaos has been proposed, whose basis consists of the eigenfunctions
of an associated Sturm-Liouville equation [1,2,3], see Fig. 1 for an illustration. The advantage of
this basis is that by construction, the partial derivatives of the basis form again a basis which
is orthogonal with respect to the same distribution as the original basis. This makes it possible
to use model derivatives, if available, for the surrogate, while keeping advantageous orthogonality
properties of the regression matrix.
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Figure 1: Illustration of the first five eigenfunctions of a one-
dimensional Poincaré basis for a distribution with three modes (visual-
ized by the gray area with y-scale on the right-hand side of the plot)

In our previous work [2], we used sparse regression-based Poincaré chaos expansions to compute
surrogate models and sensitivity indices (Sobol’ indices and DGSM) from model evaluations and
derivatives separately. We found that while the Poincaré methodology did not outperform PCE
as a surrogate model in our experiments, the Sobol’ indices computed through derivative-based
Poincaré expansions seem to be an efficient screening tool.
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However, we did not yet built surrogates from both model evaluations and derivative values at once.
This problem has been analyzed by Adcock and Sui (2019) [3]. They have shown that by applying
weighted ℓ1 regression to gradient-augmented data, the surrogate converges in a stronger norm
than for model evaluations alone, with an equivalent number of model (resp. gradient) evaluations.

In this contribution, we provide an all-included methodology for gradient-augmented analysis which
combines model evaluations and derivatives in the two main stages of surrogate modeling and
global sensitivity analysis. First, we further examine the gradient-augmented regression problem
by handling different orders of magnitude for model evaluations and partial derivatives. Second,
we present a new estimator for Sobol’ indices which uses both model evaluations and derivative
values. It is built as a minimal-variance aggregation of estimators computed from chaos expansions
and is particularly well suited for screening. We demonstrate the performance of the methodology
on a hydrological problem where gradients are available via the adjoint method.
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In recent years, a growing interest was taken in studying the robustness of a model output to a
potential misspecification of input uncertainties [1, 2]. In a common uncertainty quantification
(UQ) scheme, based on a numerical model G which uncertain inputs X1, . . . , Xd are random
variables, and a given QoI defined on the output Y = G(X1, . . . , , Xd), this means considering a
whole range of potential laws for theXi. The idea initially proposed in [3] is to apply a perturbation
to the density fi0 representing the baseline distribution of the i-th input Xi, and estimate the
corresponding perturbed QoI.

This perturbation approach could be profitably extended to situations involving more advanced
UQ tools such as sensitivity indices or metamodels. Here we propose a first exploration of how
the perturbation method introduced in [4], which is based on the Fisher distance, could be applied
in UQ studies involving gaussian process (GP) metamodels. To do so, we define I(θ) the Fisher
information Matrix (FIM) associated to the law of a GP Zθ with hyper-parameters θ ∈ Θ:

I(θ) = −E
[
∂2 ln fZ(θ, z)

∂θ∂θT

]
,

where fZ(θ, ·) is the (gaussian) density of the random process Zθ, and z = [z(n)]n=1,...,N the vector
of observed outputs of the model at design points x(1), ...,x(N). This matrix induces a metric on
Θ the parametric space in which the vector of hyper-parameters lies. The distance between two
processes with parameters θ0 and θ1 is then given by:

dF (θ0,θ1) = inf
γ∈P(θ0,θ1)

∫ 1

0

√
γ̇(t)TI(t)γ̇(t)dt,

P(θ0,θ1) denoting the set of path joining θ0 to θ1.

In this setting, each law at distance δ from the baseline one fZ(θ0, ·) can be seen as a perturbed law
at level δ. The principle of robustness analysis is then to consider Fisher spheres centered in θ0 with
growing radius, and find, for each perturbation level, the most impactful model towards the used
QoI. It can be noted that in the specific case of GP surrogate models with stationary covariance
kernels, the latter can be characterized by a probability density function in the Fourier space thanks
to Bochner’s theorem. Hence the described perturbation method could be implemented using this
spectral representation of the law of the process.

In the most simple case, one can examine the robustness of an output probability when estimated
through a GP emulator of a costly numerical model. But GP are also used to sequentially select
numerical experiments, using some uncertainty reduction criteria, in order to estimate efficiently
the target QoI with a limited computational budget. It is then possible to evaluate the robustness
of the QoI as well as the employed criterion as regards the law of the GP. We will illustrate this
principle on very simple toy-models as well as on well-known examples of the UQ community.
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Abstract

Model order reduction methods are used to approximate a manifold of functions from a high-
dimensional space by a low-dimensional space or manifold. We here propose a new approach
that aims at building a low-dimensional nonlinear manifold Mn, given a desired target precision.
The description of the manifold is similar to [1] or [2], with Mn = {L(a) + N(a) : a ∈ Rn},
where L is a linear map onto a n-dimensional space Vn and N is a nonlinear map onto a
complementary space. Here, we propose an adaptive strategy for the construction of the maps
L and N , the latter using compositions of sparse polynomials. The manifold Mn is estimated
”offline” from a set of training samples and then used ”online” to approximate the solution of
parameter-dependent equations, using a Galerkin-type projection method.

We investigate through numerical experiments the performance of our method on several parameter-
dependent problems. The results reveal the advantage of our approach compared to linear
approximation, and also to state of the art nonlinear methods.
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Life cycle assessment (LCA) has become a widely recognized methodology for evaluating the 

environmental impacts of products, technologies, and policies [1]. However, uncertainty remains a key 

challenge affecting its transparency and reliability, particularly due to the lack of a systematic 

framework for uncertainty analysis. To address this gap, we conducted a comprehensive review of 

new ISO standard [2], European Union standard [3], latest guidebook [4], and recent publications [5-

6], and proposed a comprehensive framework that clearly presents the sources, types, propagation, 

evaluation, mitigation, and reporting of uncertainty in LCA, as illustrated in Figure 1. 

 

Specifically, this framework provides direct answers to the following questions: 

(1) What are the sources of uncertainty in LCA applications? 

(2) What types of uncertainty exist in each phase? 

(3) How does uncertainty propagate through to the results? 

(4) How can the uncertainty of results be evaluated? 

(5) At which stages should researchers conduct sensitivity analysis and sensitivity checks? 

(6) How can uncertainty be reduced throughout the entire process? 

(7) How should uncertainty in LCA be reported? 

 

In conclusion, this framework integrates both the standard phases of LCA and systematic behaviors of 

uncertainty from a proper perspective. It has significant potential to help researchers better understand 

the intrinsic relationships between uncertainty and LCA, while also contributing to uncertainty 

reduction and improving the transparency and reliability of LCA studies. 
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Figure 1. A Suggested Comprehensive Framework for Uncertainty analysis in Life Cycle Assessment: 

Sources, Types, Propagation, Evaluation, Mitigation and Reporting 
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Abstract

Machine learning algorithms often involve penalized regression problems of the form

min
h∈H

n∑

i=1

(Lh(xi)− yi)
2 + λ∥h∥2.

Here (xi, yi)1≤i≤n is a dataset where xi belongs to some set X and yi ∈ R, λ ∈ R+ is a penalty
coefficient, H is a Hilbert space of real-valued functions on X, and L is a linear operator on H.
When H is a reproducing kernel Hilbert space (RKHS), it turns out that the solution lives in a
finite-dimensional space, a famous result known as “representer theorem” [1, 3].

A key property to prove this result is the generalized “reproducing property”

∀x ∈ X,∀h ∈ H : Lh(x) = ⟨h, L̃(x)⟩ (1)

where L̃(x) belongs to H and ⟨·, ·⟩ denotes the inner product associated to H. When L is the

identity operator, we have L̃(x) = K(x, .) where K is the kernel associated to H,

∀x ∈ X,∀h ∈ H : h(x) = ⟨h,K(x, .)⟩
which is the original reproducing property of RKHS [1]. This immediately extends to finite
linear combinations, i.e. when L has the form

Lf(x) =

q∑

i=1

αif(vi(x))

where αi ∈ R and vi(x) ∈ X. In that case, L̃(x) =
∑q

i=1 αiK(vi(x), .). However, the generaliza-
tion to more complex operators such as derivative or integral operators is not straightforward
as it involves a passage to the limit.

In this work, we consider a broad class of operators corresponding to limits of linear combinations
and we give a necessary and sufficient condition on K for (1) to hold under the assumption that
(1) remains true when passing to the limit. Then we focus on the derivative operator, and show
that the generalized reproducing property holds if the cross derivative of the kernel exists and
is continuous on the diagonal of X×X. We prove that this condition is less restrictive than the
known sufficient condition that K is of class C2 [4, 2].

1
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Constructing Quasi-Monte Carlo Points With and Without Sensitiv-
ity Analysis

Pierre L’Ecuyer
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Université de Montréal, Montréal, Canada

Good point sets for quasi-Monte Carlo (QMC) integration are usually constructed by selecting
parameters to minimize a figure of merit (FOM) that measures the discrepancy between the em-
pirical distribution of the points and the uniform distribution [1, 2, 6]. These FOMs often give
weights to the different subsets of coordinates, to account for their relative importance, as done
by the software in [7, 8], for example. The weights should reflect the variance contributions (or
sensitivity indices) of these subsets, which are typically unknown and costly to estimate.

A much simpler alternative is to bypass these FOMs and simply draw the parameters of the QMC
rule at random from some distribution. It turns out that for the popular QMC constructions, the
probability of drawing bad parameters (that give a large RQMC variance) is pretty small.

With randomized QMC (RQMC), we randomize the points r times independently to compute r
independent replicates of the unbiased RQMC estimator, and we usually take the empirical mean
and variance of these r replicates to estimate the true mean (the integral) and perhaps compute a
confidence interval [9]. When the QMC parameters are selected at random, independently for the
r replications, it may be better to replace the empirical mean by a more robust estimator such as
the median or something more refined, so that the outliers that may come from the rare unlucky
parameter choices have little impact on the final estimator. This idea was proposed and studied
recently in [3, 4, 5, 10, 11].

In this talk, we review these recent studies and we report on experiments that compare the mean
square error (MSE) of various estimators (the mean, the median, and others) in RQMC settings.
We also look at how to compute confidence intervals for the mean in these settings.
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Over the past six years, an informal working group under the auspices of the Organization for 

Economic Cooperation and Development (OECD)/NEA's Integration Group for the Safety Case 

(IGSC) has explored existing and new sensitivity analysis (SA) methods and provided 

recommendations for best practices. The focus is on the use of sensitivity analysis in case studies 

involving geological disposal of nuclear waste. To examine ideas and have applicable test cases for 

comparison purposes, we used multiple existing case studies. Four of these were presented in a first 

Volume [1].  

 

Three additional case studies are investigated in the recently published Volume 2 [2]: the GRS LILW 

(low and intermediate level waste) case in a salt repository, the SNL generic crystalline case, and the 

UDC reactive transport case. The three case studies are more complicated than those in Volume 1, due 

to more nonlinear behavior, outputs which exhibit bifurcation, regime changes, and nested sampling.  

 

The sensitivity methods used in the three case studies include: scatterplots, correlation and regression 

coefficients, Sobol’ indices estimated by using a variety of surrogate approximations, distribution-

based methods such as PAWN (a density-based method, acronym derived from the names of its 

proponents Pianosi and Wagener), graphical methods like CUSUNORO (Cumulative Sum of 

Normalized Reordered Output), various feature importance metrics, VARS (Variogram analysis of 

response surfaces), and quantile-based importance. 

 

Here we present selected results and highlights from Volume 2 as well as recommendations gained 

from the results and experiences from both the case studies of Volumes 1 and 2. These 

recommendations head towards defining the goals of the SA study, then scoping the analysis and 

finally selecting appropriate SA methods with considerations for proper use of the methods. We 

learned from these cases with their inherent challenges that SA is an iterative process for such cases. 

Our guidelines are provided at a high level to allow for necessary flexibility and iteration for case-

specific challenges.  
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These findings are provided in Volume 2 [2]. A very short summary of the takeaway 

recommendations is as follows: 

 

Defining the goals: We recommend that the SA practitioners start by identifying all the potential goals 

of the sensitivity analysis. This will guide their decisions around scoping and methods. 

 

Scoping the study: We suggest that the SA practitioners systematically address input identification and 

description, computational costs, potential sampling schemes, and known behavior of the physical 

model to scope their analysis. We advise that the SA practitioners account for the availability of 

resources, acceptability of methods, and prioritized goals in scoping a study so that it provides the 

level of analysis needed to support safety statements. 

 

Selecting the methods: We recommend that the SA practitioners use several approaches and methods. 

The analysis of the differences should lead to exploring the reasons for discrepancies. We suggest the 

following high-level process: 1. Begin with graphical methods for uncertainty of the output (e.g., 

histograms, horsetail time series plots) and sensitivity analysis (e.g., scatterplots, CUSUNORO 

curves). 2. Estimate first-order sensitivities, including correlation coefficients (Pearson, Spearman), 

regression coefficients, and/or main effects Sobol’ indices. Assess whether these indices accomplish 

the goals of the study. 3. Examine parameter interactions by analyzing higher-order and total effects 

and/or moment independent methods if needed to accomplish the goals of the study, especially if the 

main effects fail to capture a significant portion of the output variance. The above recommendations 

should be seen as an iterative guideline. At each step, the analyst should consider which of the analysis 

goals have not been accomplished and whether the results from the previous step can inform the most 

effective methods and models to apply in the next iteration. 

 

Using metamodels: We advise that the SA practitioners consider employing metamodeling approaches 

for case studies with potentially important higher-order effects, which may be difficult to detect 

without the computational efficiency of a metamodel. We recommend that SA practitioners who 

employ metamodeling utilize best practices for goodness of-fit metrics, cross validation, reduction of 

overfitting, and regularization methods as well as use graphical sensitivity analysis to confirm and 

supplement results from metamodeling methods. 
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Our presentation will focus on the critical challenges and advancements in sensitivity analysis for 

complex models used in nuclear and renewable energy applications.  

 

Firstly, we will discuss the intricacies of sensitivity analysis for models involving dependent variables, 

time series, and multiphysics couplings, each requiring the adaptation of standard methodologies. When 

dealing with dependent inputs, the challenge is to strike a balance between interpretability, effective 

screening performance and constrained inference. Current trends, such as Johnson's relative weights, 

Shapley values and dependence measures based on Hilbert-Schmidt independence criterion (HSIC), do 

not fully meet engineers' expectations. Moreover, the treatment of time series, where the data come from 

a single time series, raises theoretical questions about the probabilistic guarantees of the usual methods 

(confidence intervals for Sobol indices or p-values for HSIC indices). In addition, multiphysics 

simulation, where several sub-models sharing state variables are interconnected, presents the challenge 

of how to use sensitivity analyses of each sub-model to reconstruct an overall analysis of the system. 

 

Secondly, we will address how sensitivity analysis integrates into the robust optimization under 

constraints framework, especially when dealing with a large number of inputs, including uncertain ones.  

 

Thirdly, we will explore the role that sensitivity analysis can play in enhancing the explicability of 

machine learning (ML) models, thereby serving their intelligibility and auditability. The extensive use 

of ML models in data-driven AI systems, particularly those subject to new European regulations, 

requires a deep understanding of the decisions and results provided by these models. This notably 

involves comprehending the influence of input features on predicted variables and providing global 

interpretability diagnostics. Strong connections between Explainable AI (XAI) and global sensitivity 

analysis have been recently highlighted, and constitute an appealing research perspective. 

 

Finally, some software developed by our companies will be presented, and the issues addressed will be 

illustrated by application cases from our respective sectors (reactor performance analysis, accident 

transient monitoring, fuel behavior simulation and seismic analysis). 
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Da Veiga Sébastien, 2–4, 16, 17, 51, 52, 125,
129, 130

Damblin Guillaume, 132, 133
De Angelis Marco, 143, 144
De Lozzo Matthias, 64, 65
De Rooij Max, 18, 19
De Weireld Guy, 154, 155
Duckstein Alexandra, 26, 27
Duhamel Clément, 34, 35
Dumon Marine, 111, 112
Duprez Marie-Eve, 154, 155
Dutang Christophe, 131
Dutfoy Anne, 93, 94
Duvigneau Régis, 91, 92

El Kadi Abderrezzak Kamal, 93, 94
El-Boukkouri Fatima-Zahrae, 156, 157

Feas Matthias Gr, 14, 15
Feau Cyril, 36, 37
Fellmann Noé, 127, 128
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Helbert Céline, 22, 23, 34, 35, 127, 128
Heredia David, 28, 29, 149, 150
Hocquet, Sébastien, 78
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