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SIR, SIS, SIRS...

Susceptible Infected Removed



SIR
● Diseases ending with immunization (chicken pox [1] ) or death (bubonic plague [2])
● Spread of rumors, viral videos or news [3,4,5] on social networks

→ SIR epidemics end (relatively) fast, with a fraction of the population still susceptible.

Susceptible Infected Removed

[1] J.A. Yorke, W.P. London, Recurrent outbreak of measles, chickenpox and mumps: II. Systematic differences in contact rates and stochastic effects.
[2] M. J. Keeling and C. A. Gilligan, Bubonic plague: a metapopulation model of a zoonosis
[3] Adrien Friggeri, Lada A Adamic, Dean Eckles, and Justin Cheng. Rumor Cascades.
[4] C. Bauckhage, F. Hadiji and K. Kersting. How viral are viral videos? 
[5] Fang Jin, Edward Dougherty, Parang Saraf, Yang Cao, and Naren Ramakrishnan. Epidemiological modeling of news and rumors on twitter.



SIS

Susceptible Infected Susceptible



SIS
● Diseases which mutate too fast (flu [1])
● Malwares [2]

→ SIS epidemics can continue forever.

Susceptible Infected Susceptible

[1] I. Abouelkheir, M. Rachik, O. Zakary and I. Elmouki. A Multi-regions SIS Discrete Influenza Pandemic Model with a Travel-blocking Vicinity Optimal Control 
Approach on Cells.
[2] S. Peng, S. Yu and A. Yang. Smartphone malware and its propagation modeling: A survey.



SIRS
● Diseases with temporary immunization (cold [1])
● Memes on social networks [2]
● Information in the brain [3]

Susceptible Infected Removed Susceptible

[1] A. Webera, M. Weber and P. Milligan. Modeling epidemics caused by respiratory syncytial virus (RSV).
[2] C. Bauckhage. Insights into Internet Memes.
[3] L. Acedo and J. A. Morano. Brain oscillations in a random neural network. 



Epidemics on Graphs
● Epidemic estimation

● Epidemic control 

● Community detection/clustering

● Edge/link prediction on time-evolving networks

● Network estimation from epidemic

● Source(s) identification/obfuscation
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Why uncertainty?
● Most of the previous work has assumed perfect observation to some 

degree

● For some applications, this is an unreasonable assumption: 
e.g. for COVID-19, data is scarce, delayed, and/or imprecise

● Previous algorithms are not robust to adding back noise. And as we show, 
neither are the results.
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II. Uncertainty about when people are infected

III. Uncertainty about what infected people
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Setting: Controlled SIS
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Setting: Controlled SIS



Setting: Controlled SIS

Cured nodes can become 
reinfected.

Only infected nodes can 
be cured. Budget spent on 
susceptible nodes is 
wasted.



Epidemics on graphs - goals
- We  start with a fully infected graph

- Our budget is limited

- We can choose which nodes to cure

- The goal is to eradicate the epidemic



Curing the binary tree - 1st try



Curing the binary tree - 1st try



Curing the binary tree - 1st try
N/2 edges between
infected and not
infected nodes...
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Curing the binary tree - CutWidth
Curing this way keeps
the number of edges
b/w infected and 
not infected nodes
low.



Curing the binary tree - CutWidth
Worst cut encountered:
Cutwidth

~ log(N) for the binary tree



Cutwidth - definition
● Crusade: set of sets,                         where 

 
● Rate of a crusade: 

● Cutwidth: 



State-of-the-Art before this paper
- Mitigating/eradicating epidemics is still an ongoing research topic [1, 2]

- 2015: K. Drakopoulos, A. Ozdaglar, and J. N. Tsitsiklis, establishes that there exists a combinatorics 
property of graphs, called the CutWidth, which plays a crucial role in curing graphs.

- If budget ≤ (1 - ε) × CutWidth, curing takes at least exponential time (in the number of nodes) in 
expectation [1].

- If budget ≥ (1 + ε) × CutWidth, curing is easy and takes linear time [2].

- Their results hold if we know exactly which nodes are infected, at each time.

[1] Lars Lorch, Abir De, Samir Bhatt, William Trouleau, Utkarsh Upadhyay, Manuel Gomez-Rodriguez. Stochastic Optimal Control of Epidemic Processes 
in Networks
[2] Han-Ching Ou, Arunesh Sinha, Sze-Chuan Suen, Andrew Perrault, Milind Tambe. Who and When to Screen: Multi-Round Active Screening for 
Recurrent Infectious Diseases Under Uncertainty
[3] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. A lower bound on the performance of dynamic curing policies for epidemics on graphs. 
[4] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. An efficient curing policy for epidemics on graphs.



Uncertainty about the states of the nodes
- In practice, no one gets tested as soon as there are infected

- False positive/negative when tested

     Can we extend the results to the uncertain setting?



Is curing with uncertainty always possible?

No.
(We will show a counter-example)



Our theorem



Our theorem - what it means
If we have a test which tells us if a node is infected with a constant 
probability of error (even 0.1%), then:

- For all C constant (but could depend on the uncertainty), there 
exists a graph (a complete binary tree) which cannot be cured in 
polynomial time even with budget = C × CutWidth.

- This holds for every possible curing strategy.

- There is something fundamentally different between total 
information and partial information.



Why is curing with uncertainty so different? 
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Why is curing with uncertainty so different? 
Very few infected nodes... ...but exponential number 

of nodes which could be 
infected.



Conclusions
- The binary tree cannot be cured in polynomial time within reasonable 

budget.

- We identified bottlenecks which would happen under any curing strategy.

- With partial information, we have to take into account all the nodes which 
could potentially be reinfected. This can be exponentially bigger than the 
number of nodes actually infected.

- Uncertainty completely changes the results!
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Differences with the previous problem
● Inverse problem: we now aim to reconstruct graphs from epidemic 

cascades.

● Propagation model: we are now in a  SIR model (nodes can be infected 
only once, cascades die out spontaneously)

● Observation model: we know exactly who was infected, but we are not 
sure when (noisy times of infection)



Times of infection as samples

Node 1           0
Node 2           2
Node 3           1
Node 4           1
Node 5           ∞

One sample



Times of infection as samples

Node 1           0
Node 2           2
Node 3           1
Node 4           1
Node 5           ∞

These samples can be used to reconstruct the 
exact weights of every edge, for any graph [1].

Rich literature on network inference in a variety 
of settings [2,3,4, ...]

[1] Praneeth Netrapalli and Sujay Sanghavi. 2012. Learning the graph of epidemic cascades. 
[2] Bruno Abrahao, Flavio Chierichetti, Robert Kleinberg, and Alessandro Panconesi. Trace complexity of network inference.
[3] Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, Bernhard Schoelkopf. Estimating Diffusion Network Structures: Recovery Conditions, Sample 
Complexity & Soft-thresholding Algorithm.
[4] Ali Zarezade, Ali Khodadadi, Mehrdad Farajtabar, Hamid R Rabiee, and Hongyuan Zha. Correlated Cascades : Compete or Cooperate

One sample



Noisy times of infection as samples
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Node 2           2                    1                    3
Node 3           1         +         2         =         3
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 Cascade Noise One sample
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Noise could represent:

- time it takes for someone to 
visit a doctor

- hibernation (latent phase) of 
disease (HIV, COVID-19)



Noisy times of infection as samples
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Noise assumptions:

- i.i.d.

- does not take infinite values
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Noisy times of infection as samples

Node 1           0                    ?                    0
Node 2           2                    ?                    0
Node 3           1         +         ?         =         0
Node 4           1                    ?                    0
Node 5           ∞                    ?                   ∞

 Cascade Noise One sample

Extreme-noise model

- imprecision due to 
frequency of reports



Noise models
● Limited noise: 

○ For each cascade, know noisy estimate of the times of infection. 
○ We learn the weights of all edges up to precision   

● Extreme noise: 
○ For each cascade, we only know which nodes were infected. 
○ We learn the presence/absence of edges



Extreme-noise setting - case of tree

i j k

1) Uniqueness of paths in trees

2) Therefore, if there is a path as below, i and j will be co-infected more often 
than i and k.

                                               …                         ...

3) We can order all pairs of nodes by decreasing order of co-infections, and 
keep any edge that does not form a cycle.



Limited-noise setting - case of tree
● We define estimators:

● Complex expectation in general

● If i and j share an edge (which we can learn using the method above), we can 
express the limit of these estimators in a simple way:

 



Theorems: sample complexity

No noise [1] Limited-noise Extreme-noise

Trees

degree ≤ d, 

General graphs

[1] Praneeth Netrapalli and Sujay Sanghavi. 2012. Learning the graph of epidemic cascades.



Conclusions
● We can learn the edge weights of trees and bounded-degree graphs from 

noisy epidemic cascade with optimal sample complexity (up to log 
factors)

● We proved learning general graphs is possible

● We believe our result can be extended to any discrete-time spreading 
model, with multiple sources of infection
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Motivation
Why is the problem important? 

● Mixtures are everywhere. For instance: 
○ multiple strains of diseases
○ someone tweeting about both politics and football, writing “We won!”

● From a theory perspective, new and exciting: even learning mixture of two 
Gaussians/mixed regression is a hard problem with recent progress [1,2]

[1] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation and learning mixtures of 

spherical gaussians. 

[2] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating minimization for mixed linear regression 



Motivation
Why is it hard? 

● If we only had one graph, weight         between nodes i and j:
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Motivation
Why is it hard? 

● With a mixture, weight         in graph 1 and         in graph 2:

→ No simple estimator.



Lists of infections as samples

                       
                       
                     1→ 3 
                     1→ 4
                     4→ 2

 

One sample
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3

4 5
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1
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3

4 5



What if we have two graphs?



Some examples

   i   j

?



Some examples
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Some examples

   i   j  k



Some examples

Still 
unsolvable   i   j  k



Some examples

   i   j  k   l



Some examples

Solvable!   i   j  k   l



Some examples

   i   j  k

  l



Some examples

   i   j  k

  l

Also 
solvable!



Which mixtures are learnable?
We can learn all the edges up to precision    in polynomial time if and only if: 

1. The union of edges is connected

2. At least 3 edges

3.



Mixture vs one graph 
We know the list of infections

Let        (resp.       ) be the set of infected (resp. susceptible) nodes during 
cascade m at time t.

● One graph: 

● Two graphs: 



Mixture vs one graph 
We know the list of infections

Let        (resp.       ) be the set of infected (resp. susceptible) nodes during 
cascade m at time t.

● One graph: 

● Two graphs: 

● Simple estimator of edges weights does NOT work

● Complex terms do not cancel out anymore

● Computing probability of u being infected while a is susceptible is almost 
as hard as solving the mixture problem

● All estimators involve BOTH        and 



Mixture vs one graph

Now, what?



Learning edges of 
First, we learn the edges of the union of the 
mixtures:

● For each pair of nodes u and a, we calculate the 
fraction of times u infected a knowing u was the 
source of the cascade:

● u is the source with probability 1/N in both 
mixtures, so it cancels out.

● Simple test                   can decide which edges are 
in the union.



General algorithm
1. We can find the edges of the union of the mixture

2. We can calculate the edge weights for nodes of degree > 2     
  

u 
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1. We can find the edges of the union of the mixture

2. We can calculate the edge weights for nodes of degree > 2

3. Similarly, we can calculate the edge weights for nodes of degree  2

    
  

u 

        



General algorithm
1. We can find the edges of the union of the mixture.

2. We can calculate the edge weights for nodes of degree > 2.

3. Similarly, we can calculate the edge weights for nodes of degree  2.

4. Edges are already learned for nodes of degree 1.

→ We can add the nodes one by one

    
  

u 

        



Solution for the “star” structure, 1/2
We find u with degree > 2.

We use second moment:   a  u  c

 b



Solution for the “star” structure, 2/2
We have six unknowns: 

And six 1st and 2nd moment estimators:

Systems of polynomial equations are hard to solve in general. Here, we find a 
closed-form solution:



Issue with line graph

a u c

b

a u c

b

a u c

b
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Issue with line graph

a u c

b

a u c

b

a u c

b

a u b c a u b c a u b c

Impossible



Line graph: solution
We use 3rd moment: 



Sample complexity and optimal bounds 

Our algorithm Lower bound

Undirected graphs

Directed graph, 
min-degree > 2



Conclusion
● We provided necessary and sufficient conditions for learning mixtures 

of two graphs up to any precision.

● Our algorithm is sample-optimal (up to log factors).

● Our results can be extended to directed graphs if min-degree > 2, and 
unbalanced mixtures.

● Easily parallelizable.



Thank you!



Extreme-noise setting - case of bounded degree
1) Co-infection between a node i and a set S

2) The neighborhood of i is the set S of largest co-infection, and smallest size

i

Rest of the graph

Neighborhood of i


