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On one dimensional weighted Poincaré inequalities for Global Sensitivity Analy-
sis, Heredia David [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Gradient-enhanced surrogate modelling and sensitivity analysis with chaos ex-
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Time-variant reliability analysis involves the estimation of the reliability of a structural system 

accounting for the time-varying nature of structural parameters and applied loads. This contribution 

studies the application of global reliability sensitivity measures to time-variant reliability analysis and 

discusses the estimation of these sensitivity indices with the first order reliability method (FORM). We 

focus on time-deteriorating systems and in this context study two approaches for time-variant 

reliability analysis: one based on approximating the first passage probability with the probability of a 

series of time interval failure events and another that expresses the failure event through an auxiliary 

limit state in terms of the conditional failure probability given the structural parameters. Estimation of 

the reliability sensitivity indices for the two considered approaches can be performed through 

leveraging the FORM approximations introduced in [1, 2]. We demonstrate the behavior of these 

approximations through numerical examples involving deteriorating structural systems. 
 

 
References : 
 

[1] Papaioannou, I. and Straub, D., “Variance-based reliability sensitivity analysis and the FORM α-

factors”. Reliab. Eng. Syst. Saf., 210, 107496, 2021.  

 

[2] Papaioannou I. and Straub D., "FORM-based global reliability sensitivity analysis of systems with 

multiple failure modes", arXiv preprint arXiv:2403.12822, 2024.  

 

 

 

[ Iason Papaioannou; Engineering Risk Analysis Group, Technische Universität München, Arcisstr. 

21, 80290 München, Germany ] 
[iason.papaioannou@tum.de -https://www.cee.ed.tum.de/era/team/iason-

papaioannou/] 
 

 

2



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France
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indices
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The present work is motivated by the Sensitivity Analysis (SA) of models having multivariate
(MV) inputs among their input factors. SA in this context is challenging because of dependency
issues within the MV input components, which prevents to find and characterize easily the sensitive
ones.

We investigate the use of clustering in order to provide more insights on the sensitive components
of MV sensitive inputs. More precisely, we propose to use clustering to find groups of MV inputs
samples such that group characteristics explains as best as possible the influence of the MV inputs.
When successful, this strategy means that group characteristics are good summaries of the MV
inputs influence on the model outputs.

In order to apply this strategy, two questions must be answered: i) how to define quantitatively
the influence of groups on the output variability and ii) how to find clustering that maximize the
associated criteria.

Notations:
We study y = f(w, z), where w is a complex input (typically a vector of weather variables in
environmental models) and z an independent input (possibly a large vector grouping all other
inputs of interest). Using a labeling approach [2] based on samples w1, ...,wL, we now study
y = g(l, z) = f(wl, z). The Sobol’ decomposition on g writes simply: Sl + Sz + Slz = 1.

We introduce a general clustering function C such that C(l) = c ∈ 1, ..,K is the cluster label of the
input with label l. We introduce also a ’within-cluster selection factor’ u ∈ [0, 1[ that is used to
choose elements within a cluster.
Let us note (lc1, .., l

c
Nc

) the Nc elements in cluster c. We denote as h the model having cluster labels
and selection factors (along with the co-variable z) as inputs: h(c, z, u) = g(lc⌊u.Nc⌋+1, z), where

⌊x⌋ is the integer part of x.

Sensitivity analysis with selection factor u:
Our central idea to define clustering criteria is to use the sensitivity indices associated to model h,
where the cluster label c has a discrete distribution with values c1, .., cK and probabilities p1, .., pK
(probabilities of clusters according to their size), where u has an uniform distribution within [0, 1[
and z its (unchanged) uncertainty distribution. Writing the Sobol’ decomposition on h, we have:
Sc + Sz + Scz + ST

u = 1,where ST denotes a total Sobol’ index.

First clustering problem: max
C(.)

Sc

This optimization problem will allow to find clustering that maximize the main effect of the cluster

type, which is at best equal to Sl. More precisely, we show that Sc = Sl −
1

V

K∑

c=1

pcṼc, where

Ṽc = Vl∈cEz[g(l, z)]. We show that solutions of this problem are defined using quantiles of the
distributions Ez[g(l, z)], leading to an efficient numerical algorithm to find solutions of the global
optimization problem. However a drawback of this criterion is that it does not take into account
the variability of model responses along direction z.

Second clustering problem: min
C(.)

ST
u
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Using this criterion, we try to minimize the effect of the within-cluster selection factor u, thus to
minimize the effect (this time including interaction effects) of the within-cluster variability. We

show that ST
u =

1

V
Ez[

K∑

c=1

pcVc(z)], with Vc(z) = Vl∈c[g(l, z)]. We show that numerical solutions

of this problem can be found using a K-means like algorithm. Compared to a classical K-means
problem, our algorithm uses distances in the space of outputs, i.e not in the space of the variable
to be clustered.

Numerical examples
We implemented the algorithms for solving the two previous problems and tested them firstly on
a simple function at the level of gl (i.e. on functions having label l and co-variable z as inputs).
The model output y has no variability along z for l ≤ 75, where y = 1+ 0.005 l. For l > 75, Ez[y]
is also equal to 1+ 0.005 l, but y can take two values depending on z, which are inverted if l > 87.
We can see in Figure 1 that the ST

u -based criterion takes into account the variability along z and
creates clusters in the region of variability in z, which was not the case of the Sc-based criterion.
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Figure 1: Clustering result of a simple model for the two criteria. Left: model definition; Middle:
clustering based on Sc; Right: clustering based on ST

u .

We will also present during the conference clustering on a crop model [1] having vector of weather
variables among its inputs. We will be particularly interested in looking at the influence of the
number of clusters and in showing how the produced clusters can help to better understand the
influence of weather inputs.

References:
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Computer models are commonly used in many areas of science and engineering to simulate, analyze,
understand and predict complex physical systems, such as nuclear power plants. These models,
which are designed to faithfully represent the underlying physical phenomena, often involve a
large number of uncertain physical parameters. Traditionally, a distinction is made between two
types of uncertain parameters (aleatoric or epistemic), depending on whether the uncertainty arises
from irreducible natural variability or a potentially reducible lack of knowledge. Among epistemic
uncertainties, some can be reduced and quantified by a model calibration process based on available
observed data (experiments), such as deterministic calibration or Bayesian calibration [4]. The
latter type of calibration is particularly useful for quantifying and reducing epistemic uncertainties,
as it provides probability distributions for the parameters to be calibrated [5]. In support of
the calibration process, it can be very useful to perform a preliminary global sensitivity analysis
(GSA) in order to quantify how much each source of uncertainty contributes to the variability
of the quantity of interest. As will be highlighted in the presentation, it turns out that the
sensitivity indices based on the Hilbert-Schmidt Independence Criterion (HSIC), introduced by
[2] and promoted by [7] for GSA purposes, are particularly suited to parameter screening in the
context of Bayesian calibration. We will see that HSIC indices actually keep all their promises and
clearly stand out from other competing sensitivity measures. However, beyond simply promoting
HSIC indices, which are now widely used in many application fields, the main objective of this work
is to develop a GSA methodology for the Bayesian calibration of chained computer models. More
specifically, in the application under consideration, the goal in fine is to identify the calibration
parameters θ of a downstream model conditionally on the uncertainty affecting the parameters λ
of an upstream model. Consequently, the main challenge for the GSA is to incorporate the residual
uncertainty of λ into the definition and estimation of HSIC indices. To deal with this specific bi-
level uncertainty framework, addressing the uncertainties conveyed by both θ and λ, purpose-built
sensitivity measures are introduced and several estimators are derived for them. We will show
that they are (asymptotically) unbiased, consistent and have Monte Carlo-like convergence rates.
Importantly, their estimation does not require any extra computational load, since the estimates
can be directly computed from the Monte Carlo samples built for the conditional model calibration
task. Like HSIC indices, the key advantage of these indices is the ability to perform independence
tests and make decisions based on p-values, rather than subjective criteria [1,6]. Finally, our
approach is applied in nuclear fuel simulation. In this particular industrial context, the challenge
is to find the most influential calibration parameters θ of a downstream fission gas behavior model
while taking into account the uncertainty of the conductivity λ of an upstream thermal model [3].

References:
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[ Oumar Baldé; CEA DES, IRESNE, DER, SESI, oumar.balde@cea.fr ]

6



11th International Conference on Sensitivity Analysis of Model Output, April 23-25 2025, 
Grenoble, France

Surrogate-Based Sensitivity Analysis in Hydrological Modelling: A Comparative 
Evaluation with Direct Methods

XIFU, SUN
Nanjing Normal University, Nanjing, China

ANTHONY, JAKEMAN
Australian National University, Canberra, Australia

CROKE, BARRY
Australian National University, Canberra, Australia

BENNETT, FREDERICK
Department of Environment, Science and Innovation, Queensland, Australia

Adequate representation of hydrological processes is crucial for effective water resource management, 
particularly  in  regions  where  socio-environmental  pressures  require  robust  decision  making. 
Hydrological  models  are  key  to  simulating  complex  processes  such  as  rainfall-runoff  dynamics, 
groundwater flow and water quality. However, their computational complexity often leads to high 
costs, especially when undertaking sensitivity and uncertainty analyses, limiting their applicability in  
large-scale or real-time contexts.  To address these challenges,  surrogate models offer a promising 
solution  by  approximating  complex  model  behaviour  and  significantly  reducing  computational 
demands while maintaining sufficient accuracy. 
Surrogate-based  sensitivity  analysis  (SA),  which  combines  surrogate  modelling  with  sensitivity 
analysis  techniques,  helps  to  identify  influential  parameters  for  model  calibration,  validation  and 
uncertainty quantification more efficiently. However, challenges persist in selecting the appropriate 
surrogate-based SA methods, particularly in balancing model complexity, computational efficiency, 
and performance.
This  study  investigates  various  combinations  of  surrogate  models—such  as  Gaussian  Process 
Regression (GPR), Random Forest (RF), Polynomial Chaos Expansions (PCE), and Sparse Grids —
with sensitivity analysis techniques, including Sobol', Morris, PAWN, and Shapley effects, for general  
hydrological modelling. These surrogate-based SA methods are compared with direct SA approaches 
applied to the original hydrological models to evaluate their relative performance in terms of accuracy 
for screening and ranking and computational efficiency for a given convergence threshold. Model  
performance is assessed using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE),  R-squared  (R²),  and  Mean  Absolute  Percentage  Error  (MAPE),  with  various  confidence 
interval  techniques  ensuring  robustness.  Training  times  are  recorded  to  assess  computational  
efficiency, and parameter sweeping is used to explore the smoothness of the response surface.
By  comparing  surrogate-based  SA methods  with  direct  SA,  this  study  provides  insights  into  the 
strengths and limitations of each approach in hydrological modelling. The findings contribute to the 
development  of  more  efficient,  scalable  models  for  water  resource  management,  with  a  focus  on 
enhancing the integration of physical and emulation approaches to better manage uncertainties and 
improve  predictive  performance.  Future  research  should  focus  on  refining  surrogate-based  SA 
methods,  improving model  specificity,  and enhancing the accuracy and efficiency of hydrological 
predictions.

[ XIFU SUN; Nanjing Normal University]
[ xifu.sun@outlook.com ]
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This paper explores the integration of Sensitivity Analysis (SA) with ensemble weather forecasting
to improve uncertainty quantification (UQ) in Numerical Weather Prediction (NWP).

Ensemble weather forecasting plays a crucial role in meteorology by representing uncertainty
through multiple model simulations, accounting for variability in initial conditions, model
dynamics, and external influences. Widely used techniques, such as Stochastically Per-
turbed Parameterization Tendencies (SPPT) [Buizza et al., 1999, Leutbecher and Palmer, 2008],
Stochastically Perturbed Parameterization (SPP) [Ollinaho et al., 2017], Ensemble Data As-
similation (EDA) [Houtekamer and Mitchell, 1998, Bonavita et al., 2012], Singular Vectors (SV)
[Buizza and Palmer, 1995] have been fundamental in addressing uncertainties within ensemble
forecasting frameworks. However, these methods often operate under assumptions of linearity
and Gaussian error distributions, which limit their capacity to fully capture the non-linearities,
interdependencies, and broader range of uncertainties inherent in complex atmospheric systems.

Sensitivity analysis [Saltelli, 2008, Saltelli et al., 2004, Iooss and Lemâıtre, 2015] offers a robust
and complementary technique to overcome these limitations by systematically identifying, ranking,
and quantifying the influence of input parameters on model outputs. Unlike traditional ensemble
methods, SA provides a structured approach for understanding how variations in model parame-
ters impact forecast outcomes, enabling a more comprehensive analysis of non-linear interactions
and parameter dependencies. Sensitivity analysis has long been recommended and widely applied
for UQ across various scientific domains, including hydrological modeling [Ratto et al., 2007] and
environmental studies [Saltelli et al., 2004]. These applications demonstrate the effectiveness of
global sensitivity analysis in exploring the multidimensional space of the input parameters and
capturing the effects of non-linearity and of interactions among parameters in the model, thereby
improving model evaluation and calibration. Its successful implementation in other fields empha-
sises the potential benefits of integrating SA into ensemble weather forecasting, enhancing the
robustness and accuracy of uncertainty representation in meteorological models.

This paper explores the integration of SA into ensemble weather forecasting, demonstrating
how this synthesis enhances UQ in NWP models. By integrating SA into ensemble forecast-
ing, we discuss the representation of multivariate uncertainties, how to improve the accuracy
of parameter perturbations, and refine probabilistic forecasts. We detail the current ensem-
ble techniques, emphasising how SA can inform the adjustment of perturbation strategies and
better capture non-Gaussian error structures. Additionally, SA enables a more accurate rep-
resentation of joint distributions [Mara et al., 2015], leading to improved identification of criti-
cal thresholds and tipping points in model behaviour, particularly for extreme weather events
[Bousquet and Bernardara, 2021, Allen et al., 2017]. The integration of SA has the potential to
refine stochastic perturbation techniques, such as SPPT and SPP, by providing evidence-based
parameter ranges and interdependencies. By incorporating SA, meteorologists can better capture
the complexities of atmospheric systems, advancing the accuracy and reliability of probabilistic
weather predictions. This work emphasises the need for adopting SA techniques in ensemble fore-
casting to achieve more comprehensive uncertainty quantification in NWP models while offering
meteorologists a more nuanced understanding of model uncertainties, and improving the commu-
nication of forecast uncertainty to stakeholders.
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Orano Mining is currently testing the CeBr3 gamma-ray measuring device developed by ALT 
(Advanced Logic Technology) to estimate uranium content profile in boreholes. The Cebr3 
probe is a spectrometer that records the energy distribution of incoming gamma rays from 
naturally occurring radioactive materials. Due to the presence of decay chain disequilibrium in 
roll-fronts, the need has indeed arisen to go beyond the total gamma count rate to estimate 
uranium concentration. New approaches are increasingly moving towards the exploitation of 
the full shape of recorded spectra [1]. However, this shape is not solely determined by uranium 
content. Geological (apparent density) and drilling (borehole diameter, probe shift from the 
wall) parameters might also influence it. Moreover, training and testing prediction algorithms 
calls for the creation of a database of realistic well logs where variables are allowed to vary 
along  the  vertical  axis.  The  vast  number  of  potential  configurations  along  with  the  high 
computational cost of simulations makes it necessary to reduce the input space through global 
sensitivity analysis.

This study relies on the simulations of natural  gamma-ray spectra using the Monte Carlo 
Radiation Transport (MCNP) stochastic code. Due to the high number of particle histories to  
track, running accurate MCNP simulations is computationally expensive, which constrains the 



size of the dataset. Given its reliable performance with limited sample sizes, we use the Hilbert-
Schmidt Independence Criterion (HSIC) [2] to quantify input-output dependencies. Another 
one  of  its  advantages,  over  Sobol  indices  for  example,  is  that  inputs  are  not  assumed 
independent.  Its  recent  extension  to  functional  outputs  based  on  the  truncated  functional 
Principal Component Analysis (fPCA) expansion [3] is particularly well suited for conducting 
sensitivity analysis on gamma-ray spectra, which are characterized by smooth curves with 
identifiable patterns. Findings indicate a significant global influence of uranium concentration, 
borehole parameter and probe position. Formation density has a negligible effect.

A key consideration in industrial applications is interpretability.  One advantage of fPCA-based 
HSIC is to allow examining which input preferentially drives each component. Input influences 
can thus be interpreted by looking at the global patterns of variation identified by the leading 
eigenvectors. We observe that the most contributing eigenvector is related to the size of the low-
energy bump. This clarifies how the uncovered dependencies are mediated. The influence of 
uranium content can be linked to the self-absorption effect, and the impact of borehole diameter 
and probe position to the magnitude of Compton scattering in the medium.

We assess the validity of this interpretation through a second analysis. For each spectrum, we 
decouple the Compton continuum from the photoelectric peaks. The HSIC is computed for each 
part separately to determine how each input affects the shape of the spectra. The significant 
dependencies found between the shape of the Compton continuum and the inputs (apart from 
density) support the original interpretation.
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Global Sensitivity Analysis (GSA) is an important tool to better understand the behavior of black
box models. Among the numerous methods for GSA, variance-based approaches have received
much attention (Sobol’ indices introduced in [1]). Only a few papers focus on Quantile Oriented
Sensitivity Analysis (QOSA), which can help in analysing the behavior of the response at different
quantile levels [2 , 3, 4, 5]. In [6], we introduced a new estimation procedure of QOSA indices based
on the notion of projected random forest [7], with the initial random forest built from a criterion
designed for quantiles: the pinball loss also known as quantile loss [8], with theoretical guarantees.
Although informative, QOSA indices suffer from the drawback that they do not obey, even in the
framework of independent inputs, any analogue to the variance decomposition offered by Sobol’
indices through the theorem of Hoeffding [9]. This is the main reason why [5] introduced new
indices based on the Shapley values [10]. While [11] introduced Shapley effects as variance-based
measure importance, [12] suggested to adapt the value function to reach information on quantiles.
In the present work, we propose to estimate the so-called quantile-oriented Shapley effects (QOSE)
by combining the projection [7] of random forests built with from the quantile oriented criterion
we introduced in [6], as far as arguments from Lundberg et al. Algorithm [13]. We implement our
estimation procedure on both analytical examples and real data.
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Figure 1: Box-plot on toy example with 100 repetitions. Red cross is ground truth. Red box is
estimation from exhaustive search, blue box is our Monte-Carlo approximation result.

Model setting in Fig. 1:

Y = β⊺X, with β = (1, 1, 1)⊺. X ∼ N (µ,Σ) with µ = (0, 0, 0)⊺,Σ =




σ2
1 0 0
0 σ2

2 ρσ2σ3

0 ρσ2σ3 σ2
3


 , σ1 =

σ2 = 1, σ3 = 2, ρ = −0.5, 0, 0.5. Sample size n = 2000.
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versité de Toulouse, F-31000 Toulouse, France

Critical systems demand strong guaranties of safety throughout their mission. According to the
type of critical system considered, these guaranties are expressed as the fulfillment of quantitative
and/or qualitative requirements. One of the common key quantitative requirement is to ensure
that the probability of failure Pf of the system before the end of its mission is inferior to a target
threshold (typically Pf ≤ 10−4 for the aerospace applications we consider). The critical system is
here represented by a numerical input-output model with random inputs. The system failure is
associated to an output threshold exceedance. Reliability-oriented sensitivity analysis [5] aims at
evaluating the sensitivity of the inputs on the output failure. In this work, we are more precisely
interested in estimating the influence of the input distribution parameters on the failure probability
with a variance-based approach through the estimation of Sobol indices.

The input distribution parameters are usually fixed in numerical models, with the source of uncer-
tainties in the models limited to the known input distributions. In reality the parameters values
that best represent the system behavior may be unknown. This lack of knowledge about param-
eters values constitutes another level of uncertainty in the modelling of the system. Quantifying
how much these uncertainties affect the probability of failure Pf can help us identify which input
distribution parameters should be precisely estimated for a better estimation of Pf . With the in-
troduction of these parameteric uncertainties, naive estimation of the Sobol indices becomes very
expensive, needing many calls to the model to obtain input-output samples. We propose a method
to estimate the Sobol indices with adaptive enrichment of the samples.

We consider a numerical model M as a deterministic black-box, function of a random vector X of
d independent random inputs with a real output M(X). X is characterized by a probability distri-
bution function fX|θ where θ is a distribution parameter vector. The failure event is represented
by the variable 1M(X)≤T with T the threshold characterizing the failure event. The quantity of
interest is Pf (θ) = P (M(X) ≤ T ). When θ is fixed, Pf (θ) is an unknown deterministic quantity.
To represent epistemic uncertainty, the variability of θ is modeled with a continuous random vari-
able Θ. The failure probability Pf (Θ) becomes a random variable. The Sobol indices on Pf (Θ)
associated to the independant components of Θ can be estimated with the pick-freeze estimator [2],
based on an iid N-sample (Θi)i=1,...,N from Θ. However two difficulties arise for the computation
of this estimator. First, a high number of accurate probability estimations Pf (Θi)i=1,...,N have to
be performed. Second, we are in the case of rare event estimations, meaning that classical Monte
Carlo are not efficient to provide accurate probability estimation.

A possible solution is proposed in [1] for an estimation of all the Sobol indices with reverse im-
portance sampling (RIS). For a given θ0, the failure probability Pf (θ0) is estimated with Monte
Carlo method or importance sampling with sampling density g. RIS enables then to estimate
Pf (Θi)i=1,...,N without any calls to M. The corresponding Sobol indices can then be derived at
a limited cost. Nevertheless the accuracy of Pf (Θi) with RIS estimates depends mainly on the
Kullback–Leibler divergence between the optimal sampling density ∝ 1M(X)≤T fX|θi

and g. When
the variability of Θ around θ0 is too high, the RIS approximation is not sufficiently accurate and
can lead to a misestimation of the Sobol indices.

We propose an improvement of this solution with adaptive enrichment of the sample to improve
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the estimation of the Sobol indices while limiting the additional calls to M. We aim to improve
the Sobol estimation by improving the estimation of the probabilities Pf (Θi)i=1,...,N . We chose
a criterion to estimate the accuracy of the estimations of these different probabilities (e.g. the
estimated coefficient of variation of the estimator or the effective sample size [6]). After a first
estimation of the Sobol with the method of [1], we perform an IS for the least well estimated
Pf (Θi), obtaining a new sample density, new input samples and associated model outputs. These
new data fit for this particular Θi allow us to improve the estimation of Pf (Θi), but we also use
these new data in combination with the previous available data to improve as much as possible the
estimations of all the Pf (Θi)i=1,...,N . Using multiple importance sampling (mIS) [3], we search for
each Pf (Θi) the combination of available data that yields the best probability estimation. mIS
does not require additional calls to M and allow us to potentially improve on all the probability
estimations. We repeat this process of selection of Pf (Θi), adapted resampling and mIS until all
the Pf (Θi)i=1,...,N are considered sufficiently well estimated.

As case study, we will consider a drone operation safety evaluation model test case. The numerical
model considered is a timed automaton based on a functional modelling of a drone. This model is
created using the safety modelling language AltaRica 3.0 [4], we consider the model as a black box
for our study. The model takes as input vector of dimension 40 with one distribution parameter
for each dimension, corresponding to the failure time of the various components, and outputs
the time of failure of the drone after the start of operations. We are interested in studying the
probability that the drone fails within one hour of operation, and how the uncertainties about the
input distribution affect this probability.
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Toulouse, France ]
[ jonathan.mboko@onera.fr – ]

14



 

11th International Conference on Sensitivity Analysis of Model Output, April 23-25 2025, 

Grenoble, France 

 
Overcoming challenges in sensitivity analysis for complex models in nuclear and 

renewable energy applications 
 

AMANDINE MARREL 
CEA, DES, IRESNE, DER, SESI, Cadarache, 13108 Saint-Paul-Lez-Durance, France 

 

GABRIEL SARAZIN 
Université Paris-Saclay, CEA/DES/ISAS/DM2S/SGLS, 91191 Gif-sur-Yvette, France 

 

BERTRAND IOOSS 
EDF R&D, Chatou, France 

 

ADRIEN SPAGNOL 
IFP Energies nouvelles, 69360 Solaize, France 

 

Our presentation will focus on the critical challenges and advancements in sensitivity analysis for 

complex models used in nuclear and renewable energy applications.  

 

Firstly, we will discuss the intricacies of sensitivity analysis for models involving dependent variables, 

time series, and multiphysics couplings, each requiring the adaptation of standard methodologies. When 

dealing with dependent inputs, the challenge is to strike a balance between interpretability, effective 

screening performance and constrained inference. Current trends, such as Johnson's relative weights, 

Shapley values and dependence measures based on Hilbert-Schmidt independence criterion (HSIC), do 

not fully meet engineers' expectations. Moreover, the treatment of time series, where the data come from 

a single time series, raises theoretical questions about the probabilistic guarantees of the usual methods 

(confidence intervals for Sobol indices or p-values for HSIC indices). In addition, multiphysics 

simulation, where several sub-models sharing state variables are interconnected, presents the challenge 

of how to use sensitivity analyses of each sub-model to reconstruct an overall analysis of the system. 

 

Secondly, we will address how sensitivity analysis integrates into the robust optimization under 

constraints framework, especially when dealing with a large number of inputs, including uncertain ones.  

 

Thirdly, we will explore the role that sensitivity analysis can play in enhancing the explicability of 

machine learning (ML) models, thereby serving their intelligibility and auditability. The extensive use 

of ML models in data-driven AI systems, particularly those subject to new European regulations, 

requires a deep understanding of the decisions and results provided by these models. This notably 

involves comprehending the influence of input features on predicted variables and providing global 

interpretability diagnostics. Strong connections between Explainable AI (XAI) and global sensitivity 

analysis have been recently highlighted, and constitute an appealing research perspective. 

 

Finally, some software developed by our companies will be presented, and the issues addressed will be 

illustrated by application cases from our respective sectors (reactor performance analysis, accident 

transient monitoring, fuel behavior simulation and seismic analysis). 
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Abstract:

In about a decade, software and methodological development have made sensitivity studies 
viable which were impossible before or too demanding. In particular, in the field of variance-
based estimators  to  carry  out  global  sensitivity  analysis  (GSA) requiring  a  given sample 
design a few strategies such as the use of quasi-Monte Carlo sequences, groups of inputs, and 
the introduction of higher performing estimators enable to cut significantly the model runs 
needed  to  achieve  a  reasonable  level  of  convergence.  Nevertheless,  the  limit  of  a  strict 
dependency of the analysis cost on the number of the investigated factors is not overcome and 
the respect of an input structure is still a major issue.

Very recently, the Authors have proposed a machine learning approach [4] that allows us to 
estimate Sobol’ indices – first-order and total order indices - using an outstanding dynamic 
adaptive variances estimator starting from a set of Monte Carlo given data.

This estimator with dynamic adaptive variances [2] outperforms standard benchmark with a 
significant reduction of the model evaluation cost, its implementation is straightforward due 
to the fact that same formula can be applied for both first-order and total order indices, and it 
makes it possible to compute sensitivity indices for groups of inputs. However, a very specific 
sample structure has to be implemented to use it. In fact, the formula with adaptive variances  
requires four matrices, that is the independent A and B, and the derivative matrices Ab i and 
Bai respectively resulting from A but the i-th column taken from B, and similarly from matrix 
B with the i-th column from A. 

Therefore, a new machine learning approach has been proposed to create an adequate input to 
run  variance-based  sensitivity  analysis  using  the  Sobol’ estimator  with  dynamic  adaptive 
variances starting from a given data set. Two ensemble methods, bagging [5] and boosting [1, 
7], have been implemented. 

The framework implies three fundamental steps:

- Training&Learning: the training set is used to train the learning algorithm. Output of 
this step is a machine committee.

- A new structured sample  is  built  to  estimate  sensitivity  indices  using the   Sobol’ 
estimator with dynamic adaptive variances.

- The sensitivity indices are estimated.

Results reported in [4], which were conducted with a set of functions with independent inputs,
[3] appear very promising and encouraging.



In  this  work,  the  described framework is  applied  to  perform the  sensitivity  study of  the 
atmospheric  dispersion  module  of  the  Accident  Damage  Analysis  Module  (ADAM)  for 
consequence  assessment,  developed  by  the  European  Commission  to  support  the  EU 
competent authorities for the implementation of the Seveso Directive in their countries or  
other legislation associated with chemical safety and security. The analysis was conducted 
referring  to  three  different  cases  characterised  by  the  same  input  and  a  different  model 
response. 

The exercise positively confirmed the validity of the machine learning approach proposed by 
the  Authors  and  the  overcoming  of  the  design-sample  limitations  while  keeping  all  the 
advantages of the Sobol’ radial estimation.
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Prioritizing environmental sustainability is a core strategy for securing the health and prosperity
of modern societies. A goog practice for a company to identify, manage, monitor and control its
environmental impact is to use an environmental management system (EMS), such as the interna-
tionally recognized standard ISO 14001, based on environmental management problems proposed
and solved by researchers. In the present work, we study the environmental management problem
proposed by Haurie & Krawczyk [1] where they consider the pollution by multiple economic agents
located along a river. An administrative authority aims to induce competing industrial agents
to some sort of cooperation which would result in the satisfaction of the common environmental
constraints.

To answer this question, Haurie & Krawczyk propose a (static) non-cooperative game which allows
to set a Pigouvian tax for industrial agents in practice. Regarding non-cooperative games, two
types of models have been considered in competitive markets: a) the Cournot oligopoly where
industrial strategies are based on the choice of business volume and b) the Bertrand oligopoly
where agents set prices. Haurie & Krawczyk assume industrial agents behave like the Cournot
oligopolists where they set economic level xj for j = 1, . . . , J . The equilibrium level x⋆ is a Nash
equilibrium. That is, with payoff functions Oj and action set Xj , a Nash equilibrium is a vector
x⋆ = (x⋆

1, . . . , x
⋆
J) such that for all j = 1, . . . , J , x⋆

j solves the subproblem

sup
xj∈Xj

Oj(xj , x
⋆
−j),

where xj and x−j denote the action of player j and the other players’ actions, respectively. The
computation of equilibrium x⋆ for the model proposed by Haurie & Krawczyk relies on numerical
methods, see [1].

For practical use of approach proposed by Haurie & Krawczyk, one must not only compute the
equilibrium x⋆ but also measure how it is sensitive with respect to objective parameters Oj . For
a three-player game with two levels of contraints, we count 18 parameters for which we want to
understand the sensivity. Using [2], we propose an in-depth analysis of the proposed game. We
compare our approach with the current economics standard known as “comparative statics”.
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Barycentre of Models
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When models are trained on data alone, they may not accurately reflect a modeller’s view, an
expert’s judgement, or user inputs. Moreover, on many occasions the experts disagree and thus
their models, potentially trained on different datasets, need to be combined. To amalgamate the
conflicting nature of expert’s views, we propose a modified Barycentre approach. Specifically, each
expert proposes an n-dimensional stochastic process driven by different Brownian motions. The
combined meta model is created by penalising each experts’ model using a weighted relative entropy,
where the weights may be proportional to an expert’s historical performance. We prove existence
and uniqueness of the meta model, derive its dynamics, and develop deep learning algorithms to
estimate the barycentre of models. Furthermore, we allow the meta model to satisfy agreed upon
external views, in which case the meta model is modify in a minimal manner to respect the external
beliefs.
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Total indices are global sensitivity indicators subject of intensive investigation in the statistical,
machine learning as well as simulation literature. They aim to capture the strength of dependence
between a quantity of interest/target and covariates/features. In general, a total index is the
fraction of the variance of Y that is left unexplained when all features are fixed but Xi.

Applying total indices in a dependent-input setting generally requires conditionally independent
realizations. In [6], non-Cartesian input domains are studied using a rejection technique, in [2] the
pick-and-freeze methodology is also applied in the dependent input case, with the introduction of an
additional density quotient to adjust for the disparity between the product of marginal densities
(where the pick-and-freeze sampling is formed) and the joint density (where the conditionally
independent distributions are found).

In the machine learning context, it was noted by [5] that model-X knockoffs introduced by [3] may
be used for assessing feature importance. We apply this reasoning to the sensitivity analysis con-
text, and arrive at the surprising result that pick-and-freeze algorithms can be applied unmodified
also in the dependent case when the alternative sample block is generated as knockoff.

This approach is extended to moment-invariant measures using kernel-based dissimilarity measures
[4] and optimal-transport-based measures [1] which can be applied in case of stochastic output.
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Data-driven models increasingly support decision-making. However, their complexity poses chal-
lenges for human comprehension and troubleshooting and their lack of transparency can lead to
unfair and biased decisions [2, 10]. To counteract the black box effect, explainable artificial intelli-
gence (XAI) techniques are studied. One of the most commonly studied explanations is model key
drivers, which can focus managerial attention on the most important factors during implementation
[3]. Popular post-hoc explanation methods include SHapley Additive exPlanations (SHAP) [5] or
Local Interpretable Model-agnostic Explanations (LIME) [9]. These methods focus on individual
predictions and identify the features’ contributions to a specific model decision. Recent works by
[8] and [11] highlight the strong connection between post-hoc explanations and sensitivity analysis.

In the context of XAI, counterfactual analysis provides insights into how changes to one or more
features of a given instance affect the model’s prediction [12]. The application becomes even
more important when the instance of interest is an individual looking for an explanation as to
why the decision of an algorithm was positive or negative on their behalf. Consider the following
situation. An individual, say Ms. X, is requesting a loan (or a certificate of admission) to a
financial (educational) entity but gets denied. Then, Ms. X wishes to understand what she should
change/improve about her characteristics to get admitted. Ms. X can look at a counterfactual,
as the closest individual such that if she changed one or more of her features she would also get
the loan/admission. One question that naturally emerges is which feature, if changed, would be
most effective for Ms. X to achieve the desired outcome. However, [1, 6] argue that SHAP does
not provide insight into what is important for the change in the above situation.

Alternatively, in a counterfactual framework, a commonly used index is the frequency of changes
in a given feature when moving from Ms. X to her counterfactuals. A feature is deemed important
if it is frequently modified [7]. However, counting provides a summary indication of importance.
First, we cannot appreciate the magnitude of the impact. A feature may be frequently modified,
but its impact on the change could be small. Second, we cannot appreciate the direction of impact
and whether the feature is involved in interactions with the remaining variables. Also, when
moving from Ms. X to her counterfactual, one needs to pay attention that no impossible points
are attained, to avoid model predictions affected by extrapolation errors [4]. Without considering
those aspects, explanations remain partial, leave the algorithmic decision opaque, and do not shed
light on the actions to be taken.

In this work, we propose a novel approach combining counterfactual analysis and sensitivity analysis
to explain the transition from the baseline to the counterfactual state. We apportion the change in
model predictions moving from Ms. X to her counterfactual considering each feature’s individual
and interaction contributions. A data-driven algorithm is then introduced to study the transition,
combining the search for the counterfactual and identification of the impossible point involved in
the sensitivity measure calculation. The proposed method has been applied to a synthetic example
and a series of datasets. Several novel insights were obtained from the two well-known datasets in
the machine learning literature.
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The use of pesticides poses major challenges to sustainable agriculture and water quality, necessitat-
ing the development of risk assessment tools to better understand and manage these impacts. One
such tool is the PESHMELBA model [1] (Pesticides and Hydrology: modeling at the catchment
scale), a distributed, physically based model that integrates water and pesticide transfer processes
at the catchment level. This model enables the comparison of different landscape management
scenarios and their effects on water quality.

Before employing it as a decision-making tool, it is essential to properly quantify its uncertainties,
coming from various sources. While parameter uncertainty has been increasingly studied, forcing
uncertainties (e.g., rainfall/evapotranspiration forcings, or pesticide application dates and quan-
tities) are often overlooked. The uncertainty in hydrological data used for forcing input directly
impacts model simulations and further decision-making [2], but it also has indirect impacts when
used in the process of parameter calibration [3]. Ignoring forcing uncertainty can result in biased
parameter values or sensitivity indices that are only valid in one forcing condition and cannot be
extrapolated to different forcing conditions [4].

We investigate how the uncertainty in forcing data propagates to the model output, particularly
how it affects the sensitivity of model outputs to their parameters. Additionally, we examine how
forcing uncertainty influences parameter calibration.

First, we perform a global sensitivity analysis (GSA) to identify the main parameters contributing
to output uncertainty and focus on their calibration [5]. An operational approach [6] to GSA is
employed. This approach considers the different nature in the variability of the forcing inputs and
the parameter values, i.e. it distinguishes the stochastic (and thus uncontrollable) variability of the
forcings from the variability of the model parameters’ possible design values, thus demonstrating
how the forcing uncertainty impacts the model’s sensitivity to parameter values.

We then assess the advantages of a robust approach to parameter calibration for the PESHMELBA
model. As the uncertainty of forcing inputs highly depends on the specific problem and model, we
opt for a methodology that does not assume a particular structure of the forcing inputs. Rather,
the methodology relies on a sufficiently large set of realizations that represent the forcing uncer-
tainty. To manage the high computational burden of robust calibration methods and ensure the
non-intrusiveness in the forcing input space, we employ a polynomial chaos-based metamodel for
stochastic simulators based on [7], which approximates the response surface across parameters
while emulating the uncertainty of the forcing input.

Two case studies are considered, each with varying model outputs and sources of forcing uncer-
tainty, representing increasing complexity in model processes and scale of application:

• the first case examines the soil moisture profile of a single catchment plot. Here, forcing
uncertainty arises from measurement errors and the spatial heterogeneity of a rainfall event.

• the second case focuses on the daily pesticide concentration at the river outlet. In this
scenario, forcing uncertainty stems from the lack of knowledge regarding the exact dates
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of pesticide treatment. This case study is more complex due to the intricacies of pesticide
transfer processes and spatial interactions between catchment plots.

Our GSA results demonstrate that the sensitivity of model outputs to parameters varies across the
domain of forcing uncertainty. We find that rainfall uncertainty leads to varying sensitivities of soil
moisture to hydrodynamical properties at different horizon depths. Meanwhile, varying pesticide
application dates by just a few days impacts the dominant processes of pesticide transfer. This
results in a greater influence of parameters governing surface runoff when pesticides are applied
prior to heavy rainfall events.

Comparing robust parameter calibration with classical calibration, evaluated on an unseen set of
new forcing data, reveals improvements in robustness criteria for moisture profile parameter cali-
bration. However, in complex cases, the difficulty of fitting a stochastic emulator that accurately
captures the original model behavior increases rapidly with the growing interactions between forc-
ings and model parameters. This raises questions about the scalability of the presented approach
in complex studies.
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This paper describes an application of global sensitivity analysis (GSA) in the context of energy power 

systems modelling. In this application, a multi-scale system is considered, where an overarching model 

describing the system integrates smaller models that represent various components of that system. 

We refer to the overall model as the “macro-model”, and the individual component models as “micro-

models”. Notably, macro-models can be significantly more computationally intensive to solve than their 

corresponding micro-models. 

This study explores the relationship between the Sobol’ total sensitivity indices of the micro- and macro-

models, specifically within the framework of fixing certain factors to potentially reduce the complexity 

of the macro-model through GSA on the micro-models [1]. 

Consider the following set-up, where two micro-models 𝑔 and ℎ are functions of subsets of input factors 

𝑥⃗ and 𝑦⃗, respectively: 

𝑧1 = 𝑔(𝑥⃗),    𝑥⃗ ∈ 𝑅𝑛,                                                                       (1𝑎) 

𝑧2 = ℎ(𝑦⃗),    𝑦⃗ ∈ 𝑅𝑚                                                                       (1𝑏) 

The combined macro-model is expressed as: 

𝑤 = 𝑓(𝑧1, 𝑧2).                                                                            (2) 

This macro-model can also be represented as a function of the input vectors 𝑥⃗ and  𝑦⃗: 

𝑤 = 𝑓(𝑔(𝑥⃗), ℎ(𝑦⃗)) = 𝑓(𝑥, 𝑦⃗).                                                                (3) 

We assume that 𝑥⃗ and  𝑦⃗ are two uncorrelated random vectors with known probability density functions. 

The authors in [1] demonstrate that a relationship exists between the Sobol’ total sensitivity indices 𝑇𝑥𝑖

𝑔
 

and 𝑇𝑦𝑖
ℎof the micro-models (1a) and (1b), and the indices 𝑇𝑥𝑖

𝑓
 and 𝑇𝑦𝑖

𝑓
 of the macro-model (3). For certain 

classes of functions, it can be proven that: 

𝑇𝑥𝑖

𝑓
≤ 𝑇𝑥𝑖

𝑔
 and 𝑇𝑦𝑖

𝑓
≤ 𝑇𝑦𝑖

ℎ                                                                    (4) 

If the estimated total sensitivity indices for 𝑔 and ℎ are found to be small, then, according to (4), the 

indices of 𝑓 will be even smaller. Consequently, by performing GSA only on the micro-models, it is 

possible to reduce the dimensionality of the macro-model by fixing the input(s) with small total 



sensitivity indices at a specific value 𝑥𝑖
0 (equivalently, 𝑦𝑖

0). This would lead to an approximation error 

δ(𝑥𝑖
0) such that 𝔼δ(𝑥𝑖

0) = 2𝑇𝑥𝑖

𝑓
 (see [2]), where: 

δ(𝑥𝑖
0) =

∫[𝑓(𝑥,𝑦)−𝑓(𝑥~𝑖,𝑥𝑖
0,𝑦)]

2
𝑑𝑥𝑑𝑦

𝑉𝑎𝑟(𝑤)
                                                           (5) 

The approach proposed in [1] is successfully tested on a case study in the domain of power energy 

systems. The case study aims at evaluating the performance of a protection relay designed to interrupt 

the flow of current along the circuit when a fault occurs in a 54-km high-voltage submarine transmission 

line (see Figure 1). The relay is supposed to determine the fault location with satisfactory accuracy so 

to put in place the necessary countermeasures for quickly clearing the fault and restoring the power 

supply. If the relay performs well, then the fault location is determined with small uncertainty. It is 

evident that accurately estimating the location of the fault is crucial, as the time to find and repair the 

fault becomes critical. 

 

Figure 1: Schematic representation of the transmission power system under study 

The metric used for assessing the relay performance, specifically the output of the macro-model, is the 

fault location error 𝜀, defined as the difference between the actual fault location 𝑚 and the location 𝑚̂ 

recorded by the relay: 

𝜀 = 𝑚 − 𝑚̂                                                                                (6) 

The input factors are uncertain parameters related to the cross-section and the geometry of the cables. 

GSA conducted solely on the micro-models reliably indicates that the output of the macro-model (i.e., 

the fault location error) is not sensitive to 23 out of the 34 inputs; these can be fixed at any value within 

their range of variation with the aim of model simplification. Furthermore, GSA reveals additional 

features of the model. 

Applying this comprehensive methodology to the exemplary case study offers practical insights and 

general guidance on how to adapt the methodology for exploring alternative system models. 
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Utilising ordinary differential equation (ODE) models within systems biology (SB) allows for a
more comprehensive representation of biological systems and their dynamics on a global scale,
which may not be feasible with higher-order representations. By “global-scale dynamics,” we re-
fer to the ability of ODE models to capture the behaviour of entire biological systems over time,
considering interactions across multiple scales—from molecular to cellular, and even organ-level
processes [1]. For instance, an ODE model of the cardiovascular system might simultaneously
account for the dynamics of heart muscle contraction, blood flow through arteries, and the regu-
lation of blood pressure by the nervous system. This integrated approach enables researchers to
understand how changes at the molecular level, such as alterations in ion channel function, can
affect overall heart function and lead to systemic conditions like hypertension or heart failure. SB
research in recent years has focused on the personalisation of these models in order to negate the
need for invasive tests and predict patient outcomes.

The personalisation process utilises ODE models as virtual representations of specific biological
processes [2], such as predicting a patient’s metabolic response to a meal, personalising medical
treatment based on tumour growth, or identifying cardiac pathophysiology through abnormal pa-
rameter values. The personalisation problem has gained popularity alongside the rise of the ”digital
twin” concept [3]. In drug discovery and the development of less invasive medical tests, the ability
to personalise ODE models to inform medical decisions and predictions is increasingly crucial.
With the adoption of such practices in the medical field, it is essential to quantify the uncertainty
associated with any information inferred from these models. In the personalisation problem, the
focus is often on a select set of model outputs that correspond to the available experimental data,
which are used to calibrate the model parameters. In order to identify which parameters can be
used to inform medical decisions one often performs a global sensitivity analysis [4]. In doing this
the influential input parameters present themselves which are responsible for causing the largest
variation in the outputs. However, this talk examines if this is sufficient enough for personalisation.

Figure 1 is a proposal for the personalisation of a standard ODE based systems biology model
which emphasises the recursive nature of the personalisation process. For example, once a person-
alisable subset of parameters have been obtained, if said subset does not contain the biomarkers
(input parameters), one must work with clinicians to establish what additional data can be ob-
tained for a patient and thus GSA and subset selection can be iterated. In order to obtain a
subset of input parameters which are likely to be identifiable. From figure 1 we propose that the
personalisation process should be a largely offline process to obtain the best case personalisable set
of input parameters. This stage is informed by GSA and subset selection methods. Then one per-
forms an uncertainty analysis to examine if the parameter bounds prescribed are sufficient. Once
we subsequently begin to constrain the model with experimental data, to personalise the model,
this stage involves the optimisation and calibration of the model parameter values. Also, one can
then begin to examine the practical identifiability of the model parameters which allows one to
examine the uniqueness of the personalisable subset of model parameters given noisy clinical data.
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The proposed workflow below defines a novel approach to quantifying the uncertainty associated
with systems biology.
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Figure 1: The Personalisation Process: Schematic highlighting the vital uncertainty quantifi-
cation and sensitivity analysis stages involved in the personalisation of a systems biological model.

Conclusion/Main Contribution

In this talk, we propose and evaluate an extended workflow, centred on performing a comprehensive
global sensitivity analysis, to improve the personalisation of models of systems biology. We compare
this novel approach with previous personalisation methodologies, emphasising new considerations
and highlighting the importance of offline model investigations involving global sensitivity analysis
to ensure that the identified parameters are both identifiable and experimentally informative. The
talk concludes with a discussion of the key challenges associated with sensitivity analysis in systems
biology research.
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Co-active subspace methods for adjacent computer models
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Active subspace methods have become a popular tool for global sensitivity analysis and dimension
reduction for a computer model [1]. In this talk, we discuss an elegant generalization of traditional
active subspace methods to perform a joint analysis of two “adjacent” computer models [2]. This
approach allows us to define co-active direction, joint sensitivity indices (co-activity), and a scalar
metric called “concordance” which measures the alignment (or non-alignment) of the gradient
spaces of the two functions. An algorithm, based on [3], permits fast computation and implemented
in a publicly available R package.
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The principle of global sensitivity analysis (GSA) is to quantify the influence of input variables
(viewed as independent random variables) on the output of a multivariate function, often expensive
to evaluate. (Total) Sobol indices, although commonly used for this purpose, are numerically
expensive to estimate. Through Poincaré inequalities, they can be upper bounded by using DGSM
(Derivative Global Sensitivity Measures), which are cheaper to compute (see [2]). This makes
DGSM cost-effective alternatives for identifying non-influential variables.

In the preprint [1], we develop the use of weighted Poincaré inequalities in dimension 1 for GSA.
These are similar to the classical ones but include a non-negative weight introduced in the right-
hand side of the inequality. The use of weights is sometimes necessary for certain probability
distributions that do not satisfy a classical Poincaré inequality (e.g., the Cauchy distribution) and
provides an additional degree of freedom to enhance the precision of the upper bounds.

A first work on the use of weights in GSA was proposed in [4]. Their weight is specifically adapted
for linear phenomena. Indeed, the underlying weighted Poincaré inequality is saturated (i.e. be-
comes an equality) for linear functions. We extend their approach by constructing a weight from
any suitable monotonic (non-linear) function and developing a numerical method for estimating
it. In particular, our algorithm can be used to generate:

• data-driven weights from estimators of the main effects (functions representing the individual
influence of each variable), when they are monotonic. We establish results on stability and
consistency for such weights.

• non-vanishing weights that, somewhat similar to that emphasized in [3], ensure the existence
of the so-called Poincaré chaos and provide as well sharp lower bounds for total Sobol indices.

We illustrate the relevance of our approach through analytic toy models and a standard application
for a simplified flood model (see Figure 1). For instance, Figure 2 displays total Sobol indices, along
with their upper and lower bounds, of the four most influential variables – Q (a truncated Gumbell
variable), Ks (a truncated normal one), Zv and Hd (triangular ones)– of the maximal overflow of
a river, whose expression is omitted here. For these variables, we compare our results with the
unweighted ones derived in [2,3], observing in the weighted cases an important improvement for
the upper bounds, as well as a notable gain for the lower bounds.

Figure 1: A dyke, a river and variables for flood modeling.
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Figure 2: Total Sobol indices and several estimations of their:
(left) upper bounds with/without a weight, (right) lower bounds with/without a weight,
associated with variables Q, Ks, Zv and Hd in the maximal overflow of a river.
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ETH Zürich, Switzerland

Olivier Roustant
INSA Toulouse, France and Institut de Mathématiques de Toulouse, France

To surrogate expensive computer simulations and calculate Sobol’ sensitivity indices, sparse regression-
based polynomial chaos expansions are a well-known tool. They represent the model in a basis of
multivariate polynomials which are orthogonal with respect to the distribution of the input param-
eters. Recently, another type of chaos has been proposed, whose basis consists of the eigenfunctions
of an associated Sturm-Liouville equation [1,2,3], see Fig. 1 for an illustration. The advantage of
this basis is that by construction, the partial derivatives of the basis form again a basis which
is orthogonal with respect to the same distribution as the original basis. This makes it possible
to use model derivatives, if available, for the surrogate, while keeping advantageous orthogonality
properties of the regression matrix.
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Figure 1: Illustration of the first five eigenfunctions of a one-
dimensional Poincaré basis for a distribution with three modes (visual-
ized by the gray area with y-scale on the right-hand side of the plot)

In our previous work [2], we used sparse regression-based Poincaré chaos expansions to compute
surrogate models and sensitivity indices (Sobol’ indices and DGSM) from model evaluations and
derivatives separately. We found that while the Poincaré methodology did not outperform PCE
as a surrogate model in our experiments, the Sobol’ indices computed through derivative-based
Poincaré expansions seem to be an efficient screening tool.
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However, we did not yet built surrogates from both model evaluations and derivative values at once.
This problem has been analyzed by Adcock and Sui (2019) [3]. They have shown that by applying
weighted ℓ1 regression to gradient-augmented data, the surrogate converges in a stronger norm
than for model evaluations alone, with an equivalent number of model (resp. gradient) evaluations.

In this contribution, we provide an all-included methodology for gradient-augmented analysis which
combines model evaluations and derivatives in the two main stages of surrogate modeling and
global sensitivity analysis. First, we further examine the gradient-augmented regression problem
by handling different orders of magnitude for model evaluations and partial derivatives. Second,
we present a new estimator for Sobol’ indices which uses both model evaluations and derivative
values. It is built as a minimal-variance aggregation of estimators computed from chaos expansions
and is particularly well suited for screening. We demonstrate the performance of the methodology
on a hydrological problem where gradients are available via the adjoint method.
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[2] N. Lüthen, O. Roustant, F. Gamboa, B. Iooss, S. Marelli and B. Sudret, “Global sensitiv-
ity analysis using derivative-based sparse Poincaré chaos expansions”, International Journal for
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Many industrial challenges involve excursion set estimation, which can be defined as identifying a
set of feasible input values for black-box models. These input values must satisfy a constraint on the
model’s output, such as remaining below a specified threshold (e.g., [1]). A widely used approach
to address this problem involves modeling the expensive black-box function as a realization of
a Gaussian Process (GP). This surrogate model is constructed through a sequential Design of
Experiments, with points selected in the design space X ⊂ Rd based on the optimization of an
acquisition criterion (see [2] for more details). The Bichon criterion [3] is a classical approach to
excursion set estimation that offers a balanced trade-off between exploring the design space and
exploiting known regions around the boundary of the excursion set.

In this work, we focus on the pre-calibration of a numerical model for wind turbines. The simulator,
treated as a black-box model, takes system parameters (such as stiffness coefficients of various
materials) as inputs and returns vibration frequencies and deformation eigenmodes as outputs in
response to wind loads. The inputs are denoted by Θ, and the outputs by λi(Θ) for frequencies
and Modi(Θ) for modes, where i ∈ 1, . . . , p, and p is the number of modes.

Our goal is to estimate the set of feasible input parameters that ensure the simulator’s outputs
match the experimentally observed data. More precisely, we aim to pre-calibrate the numerical
model (Figure 1) by determining a set of feasible input parameters Θ for the simulator. These
parameters must ensure that the vibration frequencies λi(Θ) and deformation modes Modi(Θ)
computed by the simulator are sufficiently close, within predefined thresholds, to the observed
frequencies λ?i and modes Mod?

i , derived from experimental data based on Operational Modal
Analysis (OMA) (e.g., [3]).

Figure 1: Schematic diagram of the wind turbine simulator.

Mathematically, we focus on black-box models with vector-valued outputs G := (G1, . . . , Gp). The
partial excursion sets are defined as follows:
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∀ i ∈ {1, . . . , p}, Γ?
i := {x ∈ X, Gi(x) ≤ Ti}. (1)

In [5], a criterion is proposed for estimating the intersection of partial excursion sets. In the
context of our pre-calibration problem, knowing the input values that are feasible for all output
components is insufficient. Therefore, this work aims to estimate the partial excursion sets for each
output component simultaneously. This allows us to determine, for any given point in the design
space, which output component exceeds its respective threshold.

We propose two natural extensions of the Bichon criterion: (1) Alternating Scal, which alternates
optimization between components, and (2) Pareto Scal, which leverages Pareto solutions from the
bi-objective optimization of the Bichon criteria. These two approaches use separate GP models for
each output component. We also introduce a vector extension (Vect) of the Bichon criterion, based
on minimizing the distances between each component of the GP and its respective threshold. This
extension relies on a multi-output GP model that incorporates correlations between outputs (see
[6]) and requires the computation of orthant probabilities in multivariate normal distributions.

The methodologies introduced above are compared across several analytical examples, considering
2 and 4 input components, and 2 output components. Subsequently, these methodologies are
applied to the pre-calibration stage of the wind turbine simulation, exploring two different problem
formulations based on two dissimilarity measures. The first focuses on the two primary deformation
modes, while the second considers all deformation modes and all vibration frequencies.

Our results on both analytical examples and the wind turbine simulator pre-calibration demon-
strate the effectiveness of our proposed strategies for estimating partial excursion sets. However,
limitations associated with the covariance structure of the multi-output GP model suggest areas
for future refinement.
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Mathematical models are essential for evaluating and optimizing the performance of complex 

processes, providing insights into key performance indicators (KPIs) such as cost, efficiency, and 

environmental impact. However, these models often function as black-box systems, where underlying 

equations and derivative information are unavailable, making optimization challenging. This is 

particularly true for commercially available simulators that rely on steady-state models and heuristic 

rules, which complicate the identification of optimal process configurations. In such cases, data-driven 

optimization techniques, like Bayesian Optimization (BO), become highly valuable. 

 

Bayesian Optimization (BO) is well-suited for handling expensive, black-box models (Brochu et al., 

2010). However, BO may be challenged by high-dimensional problems. In this context, Global 

Sensitivity Analysis (GSA) can help identify the most influential variables that drive variability in the 

objective function (Saltelli et al., 2010). By quantifying both individual and interaction effects, GSA 

can reduce the variable set to only the critical ones (Kucherenko, 2013), improving BO efficiency.  
The integration of BO with GSA still faces challenges in balancing computational efficiency and 

solution accuracy, particularly when applied to complex simulation-based models. Additionally, 

surrogate-based models, while faster to evaluate, may not fully capture the true objective function, 

leading to suboptimal solutions. 

 

In this work, we compare simulation-based and surrogate-based Bayesian optimization (Triantafyllou 

et al., 2024). For the simulation-based methods, we first apply Bayesian Optimization (BO) to the full 

set of decision variables. Next, we incorporate GSA as a dimensionality reduction step, followed by 

BO on the reduced variable set. For the surrogate-based approaches, we begin by using GSA to 

identify the key variables that significantly influence the objective function. These variables are then 

used to train feed-forward neural networks (ANNs), resulting in simpler, lower-dimensional surrogate 

models. We then optimize the ANNs using two different approaches: BO and mixed integer 

programming (MIP) with a big-M reformulation of ReLU ANNs (Triantafyllou et al., 2024; Ceccon et 

al., 2022). 

 

The performance of both simulation-based and surrogate-based methods is evaluated using two 

benchmark case studies with different flowsheet simulators: (a) plasmid DNA production in SuperPro 

Designer with 18 decision variables, and (b) dimethyl ether (DME) production in Aspen HYSYS with 

14 decision variables. Generally, simulation-based methods yield superior solutions since they 

evaluate the true objective function at each step, whereas surrogate-based approaches optimize an 

approximation (ANN) of the true objective function. This can lead to the ANN having optima that 

differ from the true objective function both globally and locally (Figure 1). However, the Bayesian 

optimization of the ANN (GSA-ANN-BO) consistently demonstrates the fastest execution times, 

achieving reductions of two to three orders of magnitude compared to simulation-based BO, without 

accounting for the time taken for initial sampling. This makes it particularly advantageous for real-

time and resource-constrained optimization tasks, where computational efficiency is critical without a 

significant loss in solution quality. 
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Figure 1. Overview of the optimization methods applied to manufacturing process optimization across the 

SuperPro Designer (a, b) and Aspen HYSYS (c, d) case studies (adapted from Triantafyllou et al., 2024). The 

simulation-based approaches include pure Bayesian optimization (BO) and Bayesian optimization combined 

with global sensitivity analysis (GSA-BO). The surrogate-based approaches consist of GSA-enhanced neural 

networks optimized using mixed-integer linear programming (GSA-ANN-MILP) and Bayesian optimization of 

GSA-enhanced neural networks (GSA-ANN-BO). For the Bayesian optimization methods, the plots display the 

median values along with confidence intervals (1st and 3rd quartiles) based on 10 random seed runs. The best 

value identified using Sobol sampling is also shown for comparison. 
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(Re)insurers are constantly looking for opportunities to develop their business, increase their in-
comes and improve their profitability. However, in every line of business, portfolio growth often
leads to increased incomes and increased risk accumulation. The company’s aim is to maximize
profitability by achieving an optimal risk/reward ratio between exposure to losses and expected
profits. Although, the assessment of individual risks is important, getting the right mix of risks is
just as crucial.

In addition, on the European market, an insurer must meet the requirements of Solvency II regu-
lations, in particular it must have an amount of own funds at least equal to the Solvency Capital
Requirement (SCR). The SCR is the capital required to ensure that the (re)insurance company
will be able to meet its obligations over the next 12 months with a probability greater than 99.5%.
Formally, it is modeled with the Value-At-Risk (V aR) at the level α = 0.995.

Other risk measures can be used to model the overall risk of a (re)insurance company, the most
widely used alternative being the Conditional Value-At-Risk (CV aR), also called Tail Value-At-
Risk (TVaR) or expected shortfall (ES) for continuous distributions. CVaR is usually preferred to
VaR because it has better properties such as sub-additivity and its coherent in the sense of Artzner
et al.[1]. It is in the company’s interest to reduce risk through diversification, in order to achieve
the best risk/return ratio.

The classic approach to portfolio optimization was introduced by Markowitz in 1952 [3]. It consists
in the maximization of the expectation under the constraint of maximum variance or, equivalently,
minimizing the variance of the portfolio, for a fixed return, this problem is called the mean-
variance optimization. Its equivalent for the conditional value-at-risk (CVaR) is the mean-CVaR
optimization.

We model the (re)insurance asset market with business lines represented by the random vector X of
asset returns, taking values in a subset RX of Rd. We assume that E(|X|) < +∞. A (re)insurance
portfolio is defined by a vector γ ∈ Rd representing the quantity held in each business line by the
(re)insurer.

Let us fix some notations, with α ∈]0, 1[:

Vα(γ) = V aRα(−γTX) = min
{
M ∈ R : P

(
−γTX ≤ M

)
≥ α

}
,

Cα(γ) = CV aRα(−γTX) = E
(
−γTX

∣∣− γTX ≥ Vα(γ)
)
.

Our original goal is to solve the following equation with a fixed α ∈]0, 1[ and constraints on the
weights and a capital requirement limit K > 0. It is quite common that L0 depends on Cα(γ).

v∗ := inf
γ∈Rd

+

E(L0(γ, Cα(γ),X))

s.t. γlow
i ≤ γi ≤ γup

i ∀i ∈ {1, .., d}
s.t. Cα(γ) ≤ K.

(1)

A new approach was introduced by R.T. Rockafellar and S. Uryasev in 2000 [4] and was later
extended by Krokhmal P., Jonas Palmquist J., Uryasev S. (2002) [2] who proposed an embedding
technique to reformulate the CVaR.
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We aim to maximize a return function or minimize a loss function of a portfolio under CVaR
constraints, because this approach is well adapted to the needs of (re)insurance companies. In [2],
it is solved using linear programming, but this resolution can be very time-consuming. In this
work, we prefer to use Sample Average Approximation (SAA), see Rubinstein and Shapiro [5].

For this formulation with explicit constraints, no convergence or convergence speed results with
the SAA method has been published as far as we know, the closest result to our work is [8]. In
this last one, the function to be minimized does not depend on the data sample.

Under convexity, continuity, integrability assumptions, we prove a.s. the convergence and find a
rate of convergence for the SAA version in the case where the function to be minimized depends
on the data sample as do the constraint. Moreover, if the CVaR appears in the function to be
minimized, we show that for the optimization, under monotonic assumption, it can be replaced by
the auxiliary function introduced in [2] and [4]. We also propose a sufficient condition to obtain
the uniqueness of the solution. These results give (re)insurers a practical solution to portfolio
optimization under market regulatory constraints, i.e. a certain level of risk.
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Following [1], we consider various relaxations of the greedy-packing algorithm for the construction
of nested designs (or design sequence) on a given compact set X. The standard, non-relaxed,
greedy-packing algorithm guarantees 50% packing and covering efficiency for each design in the
sequence [2]. However, it places many design points close to the boundary of X, and a first form of
relaxation aims at countering this effect and relies on boundary avoidance [3]: bounds on packing
and covering efficiencies are still available, and an improvement in covering performance is observed
in practice.

Relaxation can also include some randomness, with bounds on packing and covering efficiencies
that can be set arbitrarily close to 50%. Compared to the now popular determinant point processes,
the construction of a design of given size n is straightforward (but its stochastic properties are much
more difficult to analyse).

When X is the hypercube [0, 1]d, the construction can take projections onto canonical subspaces
into account, with the generation of random Latin hypercube (Lh) designs as a special case.

Greedy minimisation of the energy for an isotropic kernel K is also a form of relaxed greedy
packing: here, each of the n design points present at iteration n has an influence on choice of the
next point xn+1. The kernel can be singular, which induces a strong repulsive property between
points. It can also be positive definite and define a correlation function for a random process on
X, with Matérn kernels as special cases. When the correlation length tends to zero fast enough,
the sequence of nested designs is then asymptotically 50% packing and covering optimal.

Finally, the practical implementation of the methods above requires the usage of a big but finite
candidate set where points are selected sequentially, which is sometimes a significant limitation:
for example, generating a random n-point Lh design in [0, 1]d requires a candidate set with nd

points, which is prohibitively large. A method is proposed which does not have this limitation
and selects the coordinates one at a time for each new design point in the sequence (without any
guarantee on the packing and covering efficiencies, however).
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Toulouse; CNRS. UT3, F-31062 Toulouse, France

Prieur, Clémentine
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France

Despite the numerous advances and insightful proposals in the recent years, estimation of Sobol’
indices at any order d (with particular case total indices) is still a challenge. When it comes to
theoretical convergence guarantees, two classes of methods are of particular interest. On the one
hand, the class of Pick Freeze estimators allows to estimate Sobol’ indices at rate

√
n for any d with

minimal assumptions on the computer code, but requires a sample with highly specific structure.
On the other hand, local-averaging estimators such as kernel or nearest neighbor estimators can
handle any vanilla n-sample of the inputs/output pair (given-data context), but the

√
n-parametric

rate of convergence was only proved for d ≤ 3 for nearest neighbors. In addition, such estimators
suffer in practice from large bias and variance.

In the present work, we introduce a new class of kernel estimators which enjoys a central limit
theorem and asymptotic efficiency for estimating Sobol’ indices at rate

√
n for any d from a vanilla

n-sample, unlike all previous works. From a broad perspective, our approach consists of three
main ingredients. First, we build upon the explicit expression of the efficient influence function of
Sobol’ indices which depends on the unknown regression function, and propose a plug-in estimator
where the regression function is estimated with a specific kernel estimator, in the same spirit as [1].
Second, for the latter and to ensure

√
n-consistency, we use high-order kernels as classically done

in nonparametric regression. Finally, it is crucial to handle boundary effects inherent to kernel
estimation procedures: we adapt here recent mirror-type transformations introduced in [2,3]. All in
one, we introduce two different estimators that are proved to be asymptotically normal and efficient
for Sobol’ indices at any order. From a numerical perspective, we conduct extensive comparisons
and discuss stability of high-order kernels, showing that one of our estimators performs remarkably
well on standard sensitivity analysis examples.
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Sensitivity analysis (SA) has become an essential part of the engineer’s toolbox to analyze the vari-
ability of the output of a model and explain it from the different sources of uncertainty. However,
the cost of simulators can be an obstacle to their use as SA techniques often implies to estimate
statistics, e.g., expectation, variance or sensitivity indices, using Monte Carlo (MC) sampling. An
alternative consists of replacing the simulator by a surrogate model but when the input dimension
increases, the curse of dimensionality degrades its quality and challenges its use. The same concern
arises when using a lower fidelity model. Given these limitations, we propose to combine the best of
both worlds: MC techniques to guarantee unbiasedness and multifidelity models and/or surrogate
models to reduce the variance of the estimators.

Given a collection of numerical simulators with increasing accuracy and computational cost, [1]
proposed the multilevel Monte Carlo (MLMC) technique to estimate the expectation unbiasedly.
Then, MLMC methods have been extended to other statistics with algorithms designed to achieve a
given precision. In [2], we proposed a unified MLMC framework where the unbiased MC estimator
of the quantity of interest based on the finest level can be written as the telescoping sum of unbiased
MC estimators. We applied this framework to the estimation of the covariance term of the pick-
and-freeze estimator of a Sobol’ index [3] and proposed an algorithm to allocate the sampling cost
to the different fidelity models. The allocation rule is driven by the target computational cost,
which may be more appropriate for engineering studies where one looks to reach the best accuracy
under the constraint that the total simulation time is lower than a given requirement.

In [4], we proposed to combine MLMC techniques with control variates (CV) based on surrogate
models to reduce the variance of the estimator. The CV method corrects the MC estimator
with a term derived from auxiliary random variables that are highly correlated with the original
random variable and we proved that using several control variates could not increase the variance.
Based on this, we proposed to use the outputs of surrogate models as control variates, e.g., Taylor
polynomials (TP), Gaussian process (GP) regressors or polynomial chaos expansions (PCE) and
illustrated this approach on an academic use case for which the simple use of a first-order TP
can already improve the quality of the MC estimator of the expectation. We also proposed three
extensions of this surrogate-based CV strategy to the multilevel framework. MLCV is presented
as an extension of CV where the correction terms devised from surrogate models for simulators
of different levels add up. MLMC-CV improves the MLMC estimator by using a CV based on a
surrogate of the correction term at each level. Further variance reduction is achieved by using the
surrogate-based CVs of all the levels in the MLMC-MLCV strategy. Although these techniques
can be applied to an arbitrary statistic, we provided specific expressions for the expectation and
the variance. In the case of the expectation, we also compared them in terms of accuracy and
computational cost, depending on whether the construction of the surrogates, and the associated
computational cost, precede the evaluation of the estimator.

Building on [4], we extend such estimators to sensitivity indices, e.g., input-output correlation
coefficients, Sobol’ indices, derivative global sensitivity measures (DGSM) [5] and Hilbert-Schmidt
Independence Criterion (HSIC) [6], as well as a generic framework for a wide family of estimators
of sensitivity indices and a technique for the joint estimation of several sensitivity indices [7].
Finally, a Nastran-based mechanical use case with 50 uncertain parameters is used to assess these
surrogate-based CV estimators of sensitivity indices and demonstrate the value of these variance
reduction methods in engineering.
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Global sensitivity analysis (GSA) is undoubtedly a valuable exercise to understand the behavior
of a computational model and to devise an effective intervention. Moreover, policies and decisions
that were based on a limited comprehension of uncertainty often turned out to be disastrous (5; 9;
1; 10). However, many factors contribute to the near universal non-take-up of GSA, including
thematic complexity, implementation challenges, and computational costs (8). Furthermore, GSA
lacks a visualization convention, which leads to the situation, where a majority of studies employing
GSA compute the strength of the effects of input variables, but fail to examine their shape (2),
which often can be critical for decision-making (3).

A hybrid sensitivity-uncertainty approach Sim-
ulation Decomposition (SimDec) was created
to tackle the above challenges. At its core,
it has an efficient computation of variance-
based sensitivity indices (2), which further in-
forms an intelligent visualization that tran-
scribes multidimensional relationships onto a
two-dimensional graph (3), all implemented in
open-source packages and complemented by
a no-code web dashboard freely accessible at
https://simdec.io (6). SimDec as a method
has been shown to provide added insights for
the wide range of models from different fields
(business, engineering, environment) and for-
mulated in a variety of mathematical frame-
works (4).

This conference presentation introduces the
latest development in the SimDec dashboard:
the two-output graphs. Its usefulness is demon-
strated on the selected cases from operations research. The two-output graph consists of a scatter-
plot constructed for two arbitrary model outputs selected by the user, and the two corresponding
histograms that show the marginal distributions of the two outputs. Further, the SimDec procedure
is used to identify the most influential inputs for the first output and perform the decomposition
by these inputs applied to the entire graph set: the scatterplot and the histograms become corre-
spondingly color-coded.

The figure demonstrates the results of an optimization model for a heat exchanger of a nuclear
district heating reactor (Saari et al.), in particular, the relationship between the two optimization
outcomes, levelized cost of heat (LCOH on Y-axis) and the mechanical design characteristic (Ltb
on X-axis), and their dependency on the two most influential input variables.
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The optimization favors certain values of Ltb creating peaks in its distribution. LCOH slightly
grows with larger Ltb. The inputs influence the mechanical design considerably, but not the LCOH,
which is only slightly affected by the inputs.

Through the two-output graph on SimDec dashboard, the user acquires visual access to the multi-
variate input-output behavior of a model, supplied in an intuitive and interactive graphical format.
The entire complexity of the GSA as a topic therefore remains behind the scenes, while being cru-
cial in the process of creating meaningful graphics. Consequently, we believe that the dashboard
has the potential to contribute in democratizing GSA, making its valuable functionality accessible
for modelers even with limited mathematical training.
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Abstract:

Variance-based methods to conduct global sensitivity analysis based on sampling design are 
very popular techniques with a widely consolidated tradition, in particular for their versatility, 
straightforward interpretation, and easiness of coding.

However, major challenges of these techniques are the number of runs required to achieve an 
appropriate convergence, which strictly depends on the number of investigated inputs, and the 
needed independence of the input sample.

In literature, the issue of computing sensitivity indices for models with dependent variables still 
is not broadly examined. A valid proposal to estimate sensitivity indices for models with de-
pendent variables is introduced in [3] for both first-order and total order indices as a generaliza-
tion of the Sobol’ measures without correlations. Moreover, in [4,5] a set of variance-based 
sensitivity indices for carrying out a comprehensive study of models with dependent inputs is 
defined which distinguishes between the mutual dependent contribution and the independent 
contribution of a variable to the output uncertainty.

A recent comparison among Monte Carlo estimators based on a radial design [1,2], proved some 
outstanding properties of a new formula where indices are computed over a dynamic adaptive 
variance specifically estimated for each factor index. Therefore, the estimation involves two in-
dependent matrices A and B, and two derived matrices that is the matrix Abi, that is equal to A but 
i-th column which is taken from the i-th column of B, and the matrix Bai, which is equal to B but 
the i-th column from A. In particular, due to its peculiar structure the same formula can be ap-
plied for both first-order and total order indices with very similar ranges of convergence. Tested 
on a broad set of test functions, in most cases, the new algorithm outperforms standard bench-
mark with a significant reduction of the model evaluation cost.



In this work, following [5], the Authors perform an estimation of the sensitivity indices of cor-
related input without requiring the knowledge of their conditional probability densities and re-
ferring to different sampling-based strategies. The applied method allows an easy non-paramet-
ric computation of the sensitivity measures compared to [3] however its computational cost is 
quite expensive.

Therefore, in order to increase the rate of convergence of the method, a comparative study has 
been undertaken using different design-based formulas, and in particular the algorithm with dy-
namic adaptive variance for both first-order and total order indices. The advantages identified/
verified and the results referring to a broad set of test functions are reported.

Finally, the approach (method/best formula) has been extended to the computation of the sensit-
ivity indices of groups of inputs. An example is given.
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‭Abstract:‬

‭In‬ ‭the‬ ‭context‬ ‭of‬‭increasing‬‭global‬‭uncertainties,‬‭understanding‬‭the‬‭sensitivity‬‭of‬‭complex‬‭systems‬‭is‬
‭paramount‬‭for‬‭effective‬‭resilience‬‭modelling.‬‭This‬‭study‬‭addresses‬‭the‬‭sensitivity‬‭analysis‬‭based‬‭on‬‭the‬
‭Shapley‬ ‭value,‬ ‭a‬ ‭concept‬ ‭derived‬ ‭from‬ ‭cooperative‬ ‭game‬ ‭theory‬ ‭(Shapley,‬ ‭1953),‬ ‭which‬ ‭provides‬ ‭a‬
‭robust framework for evaluating the contribution of individual variables to overall model outcomes.‬

‭This‬ ‭study‬ ‭presents‬ ‭the‬ ‭evolution‬ ‭of‬ ‭a‬ ‭resilience‬ ‭modelling‬ ‭approach‬ ‭within‬ ‭the‬ ‭PROMETHEUS‬
‭project,‬ ‭from‬ ‭its‬ ‭inception‬ ‭using‬ ‭classical‬ ‭statistical‬ ‭methods‬ ‭to‬ ‭the‬ ‭current‬ ‭application‬ ‭of‬‭advanced‬
‭sensitivity‬‭analysis‬‭techniques.‬‭Initially,‬‭our‬‭model‬‭leveraged‬‭t-statistics‬‭to‬‭determine‬‭the‬‭significance‬
‭of‬‭indicators‬‭in‬‭predicting‬‭resilience‬‭outcomes,‬‭drawing‬‭from‬‭a‬‭comprehensive‬‭set‬‭of‬‭metrics‬‭compiled‬
‭by‬ ‭institutions‬ ‭such‬ ‭as‬ ‭the‬ ‭European‬ ‭Commission's‬ ‭Joint‬ ‭Research‬ ‭Centre‬ ‭(JRC)‬ ‭and‬ ‭other‬
‭international bodies (Benczur et ali., 2023 and‬‭European‬‭Commission, 2020)‬‭.‬

‭The‬ ‭PROMETHEUS‬ ‭model's‬ ‭development‬ ‭progressed‬ ‭from‬ ‭logistic‬ ‭regression‬ ‭to‬ ‭linear‬ ‭regression,‬
‭allowing‬‭for‬‭a‬‭more‬‭nuanced‬‭understanding‬‭of‬‭the‬‭relationships‬‭between‬‭various‬‭resilience‬‭indicators‬
‭and‬ ‭system‬ ‭outcomes‬ ‭resilience.‬ ‭This‬ ‭transition‬ ‭enabled‬ ‭a‬ ‭more‬ ‭precise‬ ‭quantification‬ ‭of‬ ‭each‬
‭indicator's impact on overall resilience measures. The following considerations apply:‬

‭1.‬ ‭Logistic Regression (LogRes): A simple, well-established "expert decision modelling"‬
‭approach, represented by the formula: P(Y=1|X) = 1 / (1 + e^(-(β₀ + β₁X₁ + ... + βₙXₙ))) where‬
‭P(Y=1|X) is the probability of the outcome given the input variables, and βᵢ are the regression‬
‭coefficients.‬
‭LogRes has limited modulation of the outcomes and assumes independence among‬
‭independent variables.‬

‭2.‬ ‭Linear Regression (LinRes=: Allowing for a more nuanced understanding of relationships‬
‭between various resilience indicators and system outcomes, quantified by: Y = β₀ + β₁X₁ + ...‬
‭+ βₙXₙ + ε where Y is the outcome variable, Xᵢ are the predictor variables, βᵢ are the‬
‭coefficients, and ε is the error term.‬
‭LinRes assumes independence among independent variables while our testing has shown‬
‭strong multicollinearity.‬

‭3.‬ ‭SHAPLEY Method: An advanced approach that accounts for interactions between variables‬
‭and provides a fair distribution of contributions among predictors. The Shapley value for‬
‭variable i is calculated as: φᵢ(v) = Σ[S⊆N{i}] (|S|!(n-|S|-1)! / n!) [v(S ∪ {i}) - v(S)] where N is‬
‭the set of all variables, S is a subset of variables, v is the characteristic function, and n is the‬
‭total number of variables‬‭.‬
‭Shapley's advantage is to account for interactions and fair distribution across different‬
‭independent variables while being computationally intensive (‬‭(‬‭Iooss, B., & Prieur, C.‬
‭2019 and Linkov, I., Trump, B. D., & Keisler, J. 2018)‬‭.‬
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‭With‬‭this‬‭abstract,‬‭we‬‭aim‬‭to‬‭introduce‬‭the‬‭application‬‭of‬‭the‬‭Shapley‬‭value‬‭method,‬‭a‬‭concept‬‭derived‬
‭from‬‭cooperative‬‭game‬‭theory,‬‭to‬‭further‬‭enhance‬‭our‬‭sensitivity‬‭analysis.‬‭This‬‭novel‬‭approach‬‭allows‬
‭for‬ ‭a‬ ‭fair‬ ‭distribution‬ ‭of‬ ‭contributions‬ ‭among‬‭predictors,‬‭enabling‬‭researchers‬‭to‬‭identify‬‭key‬‭factors‬
‭influencing resilience in socio-economic systems with predicted higher accuracy.‬

‭The‬‭Shapley‬‭method‬‭addresses‬‭limitations‬‭of‬‭traditional‬‭sensitivity‬‭analysis‬‭techniques‬‭by‬‭accounting‬
‭for‬ ‭complex‬ ‭interactions‬ ‭between‬ ‭variables.‬ ‭This‬ ‭advancement‬ ‭not‬ ‭only‬ ‭quantifies‬ ‭individual‬
‭contributions‬ ‭but‬ ‭also‬ ‭captures‬ ‭the‬ ‭intricate‬ ‭interdependencies‬ ‭among‬ ‭variables,‬ ‭leading‬ ‭to‬ ‭more‬
‭nuanced insights into system behaviour.‬
‭The‬ ‭Shapley‬ ‭value‬ ‭allows‬ ‭for‬ ‭a‬ ‭fair‬ ‭distribution‬ ‭of‬ ‭contributions‬ ‭among‬ ‭predictors,‬ ‭enabling‬
‭researchers‬‭to‬‭identify‬‭key‬‭factors‬‭influencing‬‭resilience‬‭in‬‭socio-economic‬‭systems.‬‭By‬‭applying‬‭this‬
‭method,‬ ‭we‬ ‭analyse‬ ‭various‬ ‭resilience‬ ‭indicators‬ ‭compiled‬ ‭by‬ ‭institutions‬ ‭such‬ ‭as‬ ‭the‬ ‭European‬
‭Commission's‬ ‭Joint‬ ‭Research‬ ‭Centre‬ ‭(JRC)‬ ‭and‬ ‭other‬‭international‬‭bodies.‬‭These‬‭indicators‬‭serve‬‭as‬
‭critical‬ ‭inputs‬ ‭for‬ ‭our‬ ‭model,‬ ‭which‬ ‭aims‬ ‭to‬ ‭predict‬ ‭system‬ ‭responses‬ ‭under‬ ‭different‬ ‭scenarios‬ ‭of‬
‭external shocks.‬
‭The‬ ‭Shapley‬ ‭approach‬ ‭not‬ ‭only‬ ‭quantifies‬ ‭individual‬‭contributions‬‭but‬‭also‬‭accounts‬‭for‬‭interactions‬
‭between‬ ‭variables‬ ‭and‬ ‭provides‬ ‭complementary‬‭insights‬‭into‬‭model‬‭(system)‬‭behaviour‬‭as‬‭compared‬
‭with traditional variance-based sensitivity analysis (a.k.a Sobol’ indices).‬
‭Through‬ ‭case‬ ‭studies‬ ‭involving‬ ‭resilience‬ ‭metrics‬ ‭from‬ ‭sectors‬ ‭such‬ ‭as‬ ‭health,‬ ‭environment,‬ ‭and‬
‭security,‬ ‭we‬ ‭demonstrate‬ ‭how‬ ‭the‬ ‭Shapley‬ ‭method‬ ‭enhances‬ ‭predictive‬ ‭accuracy‬ ‭and‬ ‭informs‬
‭policy-making.‬
‭This‬ ‭research‬ ‭contributes‬ ‭to‬ ‭ongoing‬ ‭efforts‬ ‭to‬ ‭bolster‬ ‭societal‬ ‭resilience‬ ‭against‬ ‭multifaceted‬
‭challenges‬‭by‬‭providing‬‭a‬‭comprehensive‬‭analytical‬‭tool‬‭that‬‭integrates‬‭empirical‬‭data‬‭with‬‭theoretical‬
‭foundations‬‭(European‬‭Commission,‬‭2020).‬‭In‬‭conclusion,‬‭leveraging‬‭the‬‭Shapley‬‭value‬‭in‬‭sensitivity‬
‭analysis‬‭represents‬‭a‬‭significant‬‭advancement‬‭in‬‭modelling‬‭resilience.‬‭This‬‭approach‬‭not‬‭only‬‭enriches‬
‭our‬ ‭understanding‬ ‭of‬ ‭variable‬‭interactions‬‭but‬‭also‬‭supports‬‭decision-makers‬‭in‬‭developing‬‭strategies‬
‭that enhance system robustness in an increasingly volatile world.‬
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This paper introduces a familly of generalized sensitivity index for Hilbert space-valued random
variables, extending the framework of global sensitivity analysis (GSA) to accommodate more
complex output spaces. The need for this work stems from the growing complexity of computer
models in various scientific and engineering fields, where understanding the influence of inputs on
outputs is crucial but often challenging due to computational constraints.

We build on recent advancements in dependence measures [1] and propose new sensitivity indices
that quantifie the influence of a real-valued input X on a Hilbert space-valued output Y . This
generalization allows for a more thorough analysis of complex systems, accommodating outputs
that may be functional or high-dimensional.

The paper begins by establishing the mathematical framework, defining the conditional law and
conditional expectation for Hilbert space-valued random variables. We then introduce the concept
of equivalent random variables, which is central to the definition of our sensitivity index.

To address the crucial issue of estimation for this proposed generalized sensitivity indices, Λφ, we
propose an estimation method based on rank statistics, inspired by the work of Gamboa et al.
[3] and following the approach introduced by Chatterjee [2]. This method provides advantages
over traditional estimation techniques, particularly in terms of computational efficiency and the
capability to estimate multiple indices simultaneously.

The rank-based estimation approach uses the ranks of the input and output variables to approxi-
mate the sensitivity index. This is particularly advantageous for Hilbert space-valued outputs, as
it avoids the complexities associated with direct estimation in high-dimensional spaces.

The estimation procedure involves computing the ranks of the Xi values from a sample of n obser-
vations (Xi, Yi), ordering the Yi values according to these ranks, and constructing the estimator for
Λϕ based on the differences between consecutive ordered Y(Ri) values. This rank-based approach
is computationally efficient, allows simultaneous estimation of multiple sensitivity indices, and is
robust to outliers and non-linear relationships. Under appropriate conditions, the estimator is
consistent and asymptotically normal, providing a basis for constructing confidence intervals and
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hypothesis tests.

We provide a detailed analysis of the statistical properties of this estimator, including consis-
tency and asymptotic normality results. These theoretical guarantees support the reliability of the
proposed estimation method in practical applications.

Furthermore, we conduct numerical experiments to compare the performance of our rank-based
estimator with traditional methods. These experiments demonstrate its efficiency and accuracy
across a range of scenarios, including those with complex, high-dimensional outputs.
Our work contributes to the field of GSA by offering a rigorous and implementable tool for analyzing
the sensitivity of complex, Hilbert space-valued outputs. The proposed index and its estimation
method provide a means of understanding input-output relationships in high-dimensional and
functional settings, with potential applications in various scientific and engineering disciplines.
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F-31062 Toulouse Cedex 9, France ]
[ clement.pellegrini@math.univ-toulouse.fr – https://perso.math.univ-toulouse.fr/pellegrini/
students/ ]

49



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

Sensitivity analysis for Bayesian optimization with uncertainties

Noe Fellmann
Ecole Centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan

Christophette Blanchet
Celine Helbert
Ecole Centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan

Delphine Sinoquet

Adrien Spagnol
IFP Energies Nouvelles

This work tackles the challenge of chance-constrained optimization under uncertainties, which
entails significant computational burdens in practical applications (such as the robust design of an
electrical machine). Such robust optimization problem can be defined as follows

x∗ = argmin
x∈K

E[f(x, U)] where K = {x ∈ X ⊂ Rd s.t. P[g(x, U) ≤ 0] ≥ α}

with x the vector of design variables and U the vector of uncertain variables.

Since the underlying models of f and g usually are costly computer codes, classical methods are
out of the table as they often require numerous evaluations of these codes.

Thus, we use instead Bayesian Optimization and, more specifically, rely on EFISUR [1], an adapta-
tion for constrained Bayesian optimization in presence of uncertainties. First, f and g are modeled
using Gaussian process regression in the joint design and uncertain variable space and an acqui-
sition criterion that considers both the average improvement in the objective function and the
reliability of the constraints is defined. However, high dimensionality in either the design space or
the uncertain parameter space can pose challenges due to the complexity of the optimization steps
and Gaussian Processes (GPs) fitting.

Among all the different strategies to deal with the limitations of EFISUR in high dimensions,
we propose an adaptation through a dimension reduction of the search space by incorporating
Sensitivity Analysis in the sequential approach. Sensitivity analysis approaches allow to understand
how each input affect the outputs and to mitigate the effects of the curse of dimensionality by
retaining only the influential variables. The first important aspect of this work is the development
of new sensitivity indices in order to deal with uncertain variables. Indeed, instead of considering
how the inputs affect a scalar-valued output, which is already widely addressed in the literature, we
measure the influence of uncertain variables by their impact on a set-valued output characterized
as

U = (U1, . . . , Up) −→ Γ = {x ∈ X , f(x, U) ≤ q and g(x, U) ≤ 0}.

We derive kernel-based sensitivity indices using an appropriated kernel to compare sets with the
necessary properties in [2]. Other approaches were also considered on an industrial test-case for
comparison [3].

Using existing goal-oriented indices for deterministic variables and these new indices for uncer-
tain variables, different methodological developments based on various strategies of incorporating
sensitivity analysis into EFISUR have been proposed. They will be presented in this work, with
applications on comprehensive toy functions and a real-life test case of the robust optimization of
an electrical machine.
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Gaussian Processes (GPs) are recognized for their effectiveness as metamodels of numerical simu-
lators [6]. They offer a Bayesian framework for supervised learning, allowing the incorporation of
prior knowledge about a function through suitable kernel selection [7].

A widely used kernel in GP modeling is the anisotropic Matérn covariance function [7], which can
be written as

kν,σ,ρ(x, y) := σ2 2
1−ν

Γ(ν)

(√
2νhρ

)ν

Kν

(√
2νhρ

)
, with hρ =

( d∑

i

(xi − yi)
2

ρ2i

)1/2

,

and where Γ is the Gamma function, and Kν is the modified Bessel function of the second kind.

The parameters ν ∈ R+, σ ∈ R+ and ρ = (ρ1, . . . , ρd) ∈ R+d
are usually selected using the

maximum likelihood approach (see, e.g., [4]). This covariance function is known for its ability
to model functions with different degrees of smoothness and variable correlations across different
dimensions.

Building upon this framework, our work focuses on identifying inactive variables—those with no
influence on the function output—in settings where the number of active variables is small (e.g.,
fewer than 20) but the overall dimensionality is large (e.g., greater than 50). Specifically, we
consider functions f : Rd → R, for which there exists function of k inputs, g : Rk → R, such that:

f(x) = g(x(1), x(2), . . . , x(k)), x = (x1, . . . , xd) ∈ Rd and {(1), ..., (k)} ⊂ {1, ..., d}.

To sequentially identify inactive variables and reduce dimensionality using GPs, a common first idea
is to use sensitivity analysis, such as in the work of Marrel et al. [3], where GPs are combined with
HSIC (Hilbert-Schmidt Independence Criterion) indices to assess variable importance. Another
approach, as demonstrated by Salem et al. [5], relies on the lengthscale parameters ρ1, . . . , ρd of
the GP covariance function kν,σ,ρ. In this method, large values of a lengthscale parameter indicate
slow variation of the output with respect to the corresponding variable, signifying that the variable
is likely inactive.

Our method builds on the latter approach, relying on the lengthscale parameters and adopting a
fully Bayesian framework (see, e.g., [1]). We generate samples from the posterior distribution of
the lengthscale parameters using a Metropolis-Hastings algorithm. The main idea of the proposed
approach is to introduce an inactive control variable xd+1, which allows us to establish a reference
posterior density for the lengthscale parameters of inactive variables. To determine whether a given
variable is active, a significance level α is first fixed, and a threshold tα is computed such that the
posterior probability Pn(ρd+1 > tα) ≥ 1−α, where ρd+1 is the lenghscale parameter of the control
variable xd+1. Then, we introduce indices Pi = Pn(ρi ≤ tα), which reflect the probability that the
variable xi is active.

Initial comparisons between our method and R2
HSIC indices [2] demonstrate promising results (see,

e.g., Figure 1).
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(a) f1(x) =
1
3

∑5
i=1

(
x(i) + 2.2

∏5
i<j=2 x(i)x(j)

) (b) f2(x) = 6x(1) + 4x(2) + 5.5x(3) + 3x(1)x(2) +
2.2x(1)x(3)+1.4x(2)x(3)+x(4)+0.5x(5)+0.2x(6)+
0.1x(7)

Figure 1: Distributions of the lengthscale-based indices Pi (blue, α = 5%) and the R2
HSIC indices [2]

(orange), providing a comparison of variable importance, with a focus on distinguishing between
active (1, . . . , k), control (contr), and inactive (inac) variables, for 20 repetitions of random uniform
designs of size n = 30. Functions f1 and f2 have k = 5 and k = 7 active variables, respectively,
within an overall dimension of d = 50. Two randomly selected inactive variables from the set of
d− k are also represented.

References

[1] R. Benassi, J. Bect, and E. Vazquez. Robust gaussian process-based global optimization using
a fully bayesian expected improvement criterion. In Learning and Intelligent Optimization: 5th
Int. Conf., LION 5, Rome, Italy. Springer, 2011.

[2] S. Da Veiga. Global sensitivity analysis with dependence measures. J. Statistical Computation
and Simulation, 85(7):1283–1305, 2015.

[3] A. Marrel, B. Iooss, and V. Chabridon. The ICSCREAM methodology: Identification of pe-
nalizing configurations in computer experiments using screening and metamodel—applications
in thermal hydraulics. Nuclear Science and Engineering, 196(3):301–321, 2022.

[4] S. J. Petit, J. Bect, P. Feliot, and E. Vazquez. Parameter selection in gaussian process interpo-
lation: an empirical study of selection criteria. SIAM/ASA J. on Uncertainty Quantification,
11(4):1308–1328, 2023.

[5] M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Gaussian process-based
dimension reduction for goal-oriented sequential design. SIAM/ASA Journal on Uncertainty
Quantification, 7(4):1369–1397, 2019.

[6] T. J. Santner, B. J Williams, and W. I.r Notz. The Design and Analysis of Computer Experi-
ments. Springer, 2018.

[7] M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer, 1999.
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Functional ANOVA ([1-3]) and derivative-based FANOVA ([4]) are widely used in statistical mod-

eling, uncertainty quanti�cation and sensitivity analysis (e.g., [4-10]). Such decompositions of

functions f : Rd → R have interesting properties when the input variables are independent, such

as i) the uniqueness of the decomposition, ii) Sobol' main indices (i.e., Sjs) and interaction indices

sum up to one, iii) the Shapley e�ects of inputs (i.e., Shjs from [11]) satisfy ([12])

0 ≤ Sj ≤ Shj ≤ STj ≤ 1 ,

with STj
the total index of the input Xj , j = 1, . . . , d.

For functions with non-independent input variables (i.e., X := (X1, . . . , Xd)), dependency models

(DMs) allow for extracting the dependency structures of such variables under the statistical and

probabilistic framework ([13-14]). Using (∼ j) := {1, . . . , d} \ {j} and Z∼j for a random vector of

d− 1 independent variables, a DM of X is given by

(Xj ,X∼j)
d
= (Xj , rj (Xj ,Z∼j)) ,

where Xj is at the �rst position, and Z∼j represents X∼j in that DM. Composing the function

of interest by DMs is used for de�ning the dependent sensitivity indices (DSIs) of Xjs and their

upper-bounds (i.e., dSj , dSTj
, UBj) in [13]. Such indices verify

dSj =
V [E [f(X)|Xj ]]

V [f(X)]
; 0 < dSj ≤ dSTj

≤ UBj , ∀ j ∈ {1, . . . , d} .

Despite the main DSIs are always less than the total ones, note that main indices and interactions

do not sum up to one in general, leading to some interpretability issues. It is also the case in [15].

In this abstract, we propose new DSIs that improve the above approach by accounting for the e�ects

of innovation variables Zjs, which represent Xjs in some DMs. Basically, our approach consists in

collecting necessary and su�cient equivalent representations of f(X) in one multivariate outputs,

and then applying the �rst-type generalized sensitivity indices ([7,8,10]) to assess the e�ects of Xjs.

The new main, interaction and total DSIs (i.e., DSj , DSu, DSTj ) share the following properties:

0 ≤ DSj ≤ DSTj ≤ 1;
∑

u⊆{1,...,d}
|u|>0

DSu = 1 .

Note that dSjs are DSjs when neglecting the e�ects of innovation variables. Also, when all the

inputs are independent, we have DSj = dSj = Sj and DSTj
= dSTj

= STj
. Our new approach

can cope with every model and every distribution of the inputs. For linear models evaluated at

the Gaussian random vector, Theorem 1 gives the (new) main and total DSIs of Xj .
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Theorem 1 Let f(X) = βTX with X ∼ N (0,Σ). If Σ ∈ Rd×d has full rank, then

DSj = DSTj
=

1

dV[Y ]

∑

u⊆(∼j)

(
d− 1

|u|

)−1Cov

[
Xj ,X

T
∼uβ∼u|Xu

]2

V [Xj |Xu]
.

Proof. Given a matrix L∼{u,j},∼{u,j}, such results rely on a DM of (Xu, Xj ,X∼{u,j}), that is,

Xj
d
= Σj,u (Σu,u)

−1
Xu +Σ

1/2
j|uZj

X∼{u,j}
d
= Σ∼{u,j},u (Σu,u)

−1
Xu +Σ∼{u,j},j|uΣ

−1/2
j|u Zj + L∼{u,j},∼{u,j}Z∼{u,j}

. □

In view of Theorem 1, the proposed DSIs are exactly the Shapley e�ects of Gaussian inputs using

linear models (see [11]).
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A new paradigm for global sensitivity analysis

Gildas Mazo
Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France

Current theory of global sensitivity analysis, based on a nonlinear functional ANOVA decomposi-
tion of the random output, is limited in scope—for instance, the analysis is limited to the output’s
variance and the inputs have to be mutually independent—and leads to sensitivity indices the
interpretation of which is not fully clear, especially interaction effects. Alternatively, sensitivity
indices built for arbitrary user-defined importance measures have been proposed but a theory to
define interactions in a systematic fashion and/or establish a decomposition of the total importance
measure is still missing. It is shown that these important problems are solved all at once by adopt-
ing a new paradigm. By partitioning the inputs into those causing the change in the output and
those which do not, arbitrary user-defined variability measures are identified with the outcomes of
a factorial experiment at two levels, leading to all factorial effects without assuming any functional
decomposition. To link various well-known sensitivity indices of the literature (Sobol indices and
Shapley effects), weighted factorial effects are studied and utilized.

[ Gildas Mazo; Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France ]
[ gildas.mazo@inrae.fr – http://genome.jouy.inra.fr/~gmazo/ ]
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Hoeffding HDMR, Sobol’ HDMR and the Shapley Value

Thierry, A., Mara
PIMENT EA 4518, University of Reunion, Le Tampon, Reunion

Let y = f(x) be the quantity of interest, function of some predictors x = (x1, . . . , xd), also called
features or inputs. We denote D = (1, . . . , d), D+i any subset of D that contains the label i ∈ D.
We aim at assessing how sensitive is y to the x variables. To do so, it is convenient to refer to
some high-dimensional model representation (hdmr) of f to assess the contribution of each input
variable to y.

The first hdmr we consider is the one of W. Hoeffding [1], that is,

f(x) = fH
0 +

d∑

i1=1

fH
i1 (xi1 ) +

d∑

i2>i1

fH
i1,i2(xi1 , xi2 ) + · · · + fH

1...d(x1, . . . , xd) (1)

where, fH
0 = E [f(x)] and fH

α =
∑

β⊆α(−1)|α|−|β|E [f(x)|xβ ], α ⊆ D. Hoeffding hdmr is always
unique but the summands are only orthogonal if the x-variables are independent of each other.
Otherwise, it is not obvious to infer how the input variables contribute to f(x) or to its variance
V [f(x)] given that they can contribute alone or mutually (due to correlations and interactions).
L. Shapley [5] derived some statistic φi(x) to assess the fair contribution of xi to y. By fair, it is
meant that mutual contributions are equally shared among the cooperating variables. It results
that,

f(x) = fH
0 +

d∑

i=1

φi(x) (2)

and it can be shown that φi(x) =
∑

α⊆D+i

fH
α (xα)

|α| . Besides, by denoting φ = (φ1, . . . , φd) and

C = Cov(φ) the covariance matrix of φ, one obtains the variance-based Shapley value [3] as follows,

Shi =
∑d

j=1 Ci,j .

The second hdmr we consider is the one of I.M. Sobol’ [6], that stipulates that for any u ∼ U (0, 1)
d
,

we can write,

g(u) = g0 +

d∑

i1=1

gi1(ui1) +

d∑

i2>i1

gi1,i2(ui1 , ui2) + · · · + g1...d(u1, . . . , ud) (3)

with the summands orthogonal to each other by imposing that
∫ 1

0
gα(xα)duik = 0, ∀ik ∈ α. The

hierarchical Rosenblatt transformation (RT) [4] provides the link between u and x, as follows,





ui1 = Fi1 (xi1 )
ui2 = Fi2|i1(xi2 |xi1 )
...
uid = Fid|∼id(xid |x∼id)

(4)

where (i1, . . . , id) is an arbitrary ordering of the set (1, . . . , d), Fi1 is the marginal cumulative
density function (cdf) of xi1 , Fα|β is the conditional cdf of xα on xβ with α ∩ β = ∅. Obviously,
y = f(x) = g(u), but neither the RT is unique (unless the variables be independent of each other)
and nor the Sobol’ hdmr.

We note that only g0 = fH
0 and gi1(F

−1
i1

(ui1)) = fH
i1

(xi1 ) when the inputs are not independent.
From the Sobol’ hdmr in Eq.(3) it is possible to compute the following variance-based sensitivity
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indices [2],

Sxi1
=

V [E [y|ui1 ]]

V [y]
=

V [gi1(ui1)]

V [y]
, (5)

ST ind
xid

=
E [V [y|u∼id ]]

V [y]
=

∑
α⊆D+id

V [gα(uα)]

V [y]
, (6)

Sind
xid

=
V [E [y|uid ]]

V [y]
=

V [g1...d(u1, . . . , ud)]

V [y]
, (7)

STxi1
=

E [V [y|u∼i1 ]]

V [y]
=

∑
α⊆D+i1

V [gα(uα)]

V [y]
, (8)

Sxi1
is the amount of variance explained by xi1 alone including its cooperative contribution due

to its dependence on x∼i1 while Sind
xid

is the one of xid that does not account for the mutual

contribution. STxi1
is the amount of variance explained by xi1 including all its mutual contributions

(i.e. interactions+correlations) with x∼i1 while ST ind
xid

does not take into account contributions

due to the dependences of xid on x∼id .

In my talk I will discuss the pros and the cons of the different approaches to analyze model responses
or any given dataset and I will show some examples.
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Enabling Time Series Sensitivity Analysis with Iterative Variance
Orthogonal Decomposition

Mouad Yachouti
CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120
Palaiseau, France

Guillaume Perrin
COSYS, Université Gustave Eiffel, 14-20 Boulevard Newton, 77447 Marne-la-
Vallée, France

Josselin Garnier
CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120
Palaiseau, France

In many critical areas, large amounts of historical data are collected to monitor complex dynamic
systems, such as in nuclear industry, finance, manufacturing, etc. To ensure that these systems
function properly, a response variable (output) is observed along with environment variables (in-
puts) that may have an influence on its outcome. Explaining the latter with respect to the input
variables has then become a crucial need. Answering this question is non-trivial due to the func-
tional nature of the variables and the response [4], the temporal correlation of the inputs (for
example, the presence of a daily periodicity in the data), or memory effects (ie. the fact that the
impact of an event at a time t is observed at a time t+ τ for a non-negligible response time τ).

To this end, Sensitivity Analysis (SA) provides powerful tools to engineers and practitioners.
In particular, the framework of variance-based SA allows to link the output’s variance to the
individual (or combined) inputs variances and interpret them as contributions to the total variance.
Generalizations to functional and temporal outputs have been the subjects of many works (see, for
example, [4, 1]).

In this work, we propose a decomposition procedure for time series to enable a quantitative
variance-based SA that clarifies the role of memory effects. The methodology is a two-stage ap-
proach. First, a linear model taking into account only the instantaneous input variables and their
polynomial transforms is fitted to approach the output. Then, iteratively, for each input variable,
a distributed-lag model [5] is fitted to take into account its memory effects while ensuring, by
construction, the orthogonality to the already fitted models. This allows to decompose the total
variance of the output as the sum of the variances of the resulting components.

The proposed framework is illustrated on multiple toy examples, and, then, applied to a real-world
application case of wind power production [3, 2].

This research is supported by the Stress Test, Financial Steering and Risk management Chair
hosted by the Center of Applied Mathematics (CMAP) between Ecole Polytechnique, BNP Paribas,
and Fondation de l’Ecole Polytechnique. Wind power data is provided by the Energy4Climate
Interdisciplinary Center (E4C) of Institut Polytechnique de Paris, for which the authors would like
to express their thanks.
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Surrogate GSA with categorical and continuous inputs.

Robert, A., Milton
The University of Sheffield, UK

Solomon, F., Brown
The University of Sheffield, UK

Many real-world problems combine qualitative and quantitative input features. To address these,
we perform Global Sensitivity Analysis in the presence of categorical (i.e. discrete valued) inputs
alongside continuous ones. The strategy employed is to treat each categorical combination or
state as a separate output in a multi-output Gaussian process (MOGP), using an RBF kernel for
continuous inputs. Sobol’ indices are extended to assess the influence of continuous inputs on the
correlation between categorical states. This in turn is related to the influence of the categorical
state on the Sobol’ indices of the output. In this way one may effectively consider cooperation
between categorical and continuous inputs to influence the output. The possibility of multi-task
learning, where different categorical states inform each other via the MOGP is investigated, and
its effect on GSA is outlined.

Applications are presented to engineering problems, such as a synthesis where certain chemical anal-
yses may fail under some conditions, or certain categorical combinations have only been sparsely
investigated as they are considered unpromising. An important application is to syntheses where
the categorical inputs are the choice of ingredients or conditions, recently explored using a related
approach [1].

The ultimate benefit of GSA is often to reduce the number of inputs in order to aid experimental
design and optimisation of the synthesised material. The appoach outlined here is particularly
suited to situations where training data is sparse, and must be utilised to maximum effect, for
example in pharamaceutical production where syntheses may be extremely expensive. This should
also prove useful in wider applications, not related to synthesis.

[1] Y. Comlek, L. Wang, and W. Chen, “Mixed-Variable Global Sensitivity Analysis for Knowledge
Discovery and Efficient Combinatorial Materials Design.”, ASME. J. Mech. Des., 146(5):1–10,
2024.

[ Robert A. Milton; Department of Chemical, Materials and Biological Engineering, The University
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Application of HSIC-Lasso for high-dimensional feature selection in
shapelet-based decomposition

Julien Pelamatti
EDF R&D, Chatou, France

Ibrahim Seydi
Sorbonne Université, Paris, France

Nicolas Bousquet
EDF R&D, Chatou, France

In this work, we present a novel approach for selecting an optimal projection basis for time series
objects when using shapelet decomposition in a classification framework, leveraging a Lasso-like
high-dimensional non-linear feature selection method based on the Hilbert-Schmidt Independence
Criterion (HSIC)[1].

Time series analysis frequently faces challenges such as high dimensionality, autocorrelation, and
the difficulty of identifying key features that capture essential dynamics across different temporal
scales and phase offsets. To address these issues, we employ shapelet decomposition[2], a technique
designed to extract shape-based features from time series, preserving both temporal and frequency
information. The core idea is to represent a time series dataset through minimal distances to specific
representative patterns. Shapelet decomposition not only performs well compared to other state-of-
the-art methods for time series learning but also provides enhanced interpretability by identifying
patterns most relevant to the algorithm decisions, often offering insights into the physical meaning
behind these decisions.

Given the large number of possible shapes that can be extracted from a dataset, selecting the most
relevant shapes-i.e., the most informative projection basis-is crucial for numerical tractability. In
most prior works, this selection is achieved by iteratively optimizing the information gain among
a set of candidate patterns[3]. However, this approach has two main drawbacks: its high computa-
tional cost due to two nested optimization problems and the potential for selecting interdependent
features, leading to redundant information.

As an alternative, we propose selecting the optimal shapelet decomposition basis using HSIC
Lasso, a Lasso-like non-linear high-dimensional feature selection method that uses HSIC to identify
a sparse subset of the most informative and mutually independent features[4]. This approach
requires only a single optimization loop over the Lasso weights, making it a significantly more
computationally efficient alternative to the standard method. Additionally, as already mentioned,
the set of informative features selected by this approach is so that its components do not present
strong interdependence.

We validate our approach on both synthetic and real-world datasets, demonstrating its potential
to improve performance, scalability, and interpretability of time series classification models. Our
method offers a powerful tool for a wide range of application domains.
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Bayesian Adaptive Spline Surfaces: An Emulator Made For Sensitivity Analysis 
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For models that are even slightly expensive to evaluate, many global sensitivity methods can 
be difficult to use.  Accurate estimation of Sobol indices or delta indices can require many 
thousands to millions of model evaluations. While methods like derivative-based global 
sensitivity metrics allow the user to bound Sobol indices with very limited model runs, these 
bounds are not always small enough to be practical. Further, the practitioner is often faced 
with the “given data” scenario, where they have been given a set of model evaluations and 
they cannot further design more evaluations. Various approximations to sensitivity indices 
exist for the “given data” scenario, but accuracy can be a challenge.  

Emulator-based sensitivity analysis is a frequent solution to these problems. The 
practitioner uses a reasonable number of model evaluations (or “given data”) to train a 
statistical surrogate, or emulator, of the more expensive model of interest. Assuming 
sufficient emulator accuracy, the practitioner can then perform sensitivity analysis of the 
emulator (which is cheap to evaluate) to approximate sensitivity analysis of the model of 
interest. For example, Figure 1 shows accuracy of emulator-based delta sensitivity compared 
to the standard approach. Many classes of emulators exist, including Gaussian processes, 
basis function approaches, polynomial chaos, tree-based models, and neural networks, and 
some of these are nicely suited for use for sensitivity analysis problems. In this talk, I will 
describe in detail one emulator that I have found especially useful: Bayesian adaptive spline 
surfaces (BASS). 

 

Figure 1: Convergence of three different approaches to calculating delta sensitivity indices for a material strength model 
called PTW. The emulator approach with given data achieves greater accuracy than the given data approach of python’s 
SALib (with the same given data). 
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BASS [1-3] is a Bayesian version of Friedman’s multivariate adaptive regression 
splines (MARS). Given training data, the response is modeled as a linear combination of 
tensor product spline basis functions. The variables and interactions involved in the basis 
functions, as well as the spline knots and the number of basis functions, are learned in a fully 
Bayesian framework. This emulator works well in practice: it is relatively fast, accurate, and 
scalable [4]. In addition, the form of the basis functions simplifies many sensitivity analysis 
tasks. For example, the Sobol indices can be calculated analytically for main effects, total 
effects, and all interactions under many input distribution assumptions, including truncated 
Gaussian mixtures. Tools in R (BASS package [1]) and python (pyBASS) allow for this kind 
of analysis to be performed routinely.  

Recent work has also demonstrated that the active subspace is also available in closed 
form for BASS [5], and that, with a particular input dependence structure, Shapley effects are 
also analytical. Of course, all of these sensitivity metrics could be approximated using 
sampling for any number of emulators, but sampling-free formulations simplify many aspects 
of their use. Additionally, the error distribution of BASS can be generalized for use for robust 
regression, quantile regression, and other forms of flexible-likelihood regression, and the 
sensitivity metrics mentioned above can still be calculated analytically [6]. Figure 2 
demonstrates how sensitivity changes with quantile for a stochastic epidemiology model [6]. 

 
Figure 2: 80% posterior intervals for the Sobol indices of a stochastic SIR model as a function of response quantile. Low 
quantiles are sensitive to all inputs and their two-way interactions (not shown), but sensitivity in the large quantiles is 
dominated by x2. 
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Variance-based importance measures for high-dimensional linear model via
Johnson indices: Insights and comparisons

LAURA CLOUVEL
EDF R&D, PERICLES Department, Saclay, France

BERTRAND IOOSS, VINCENT CHABRIDON
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In regression analysis, importance measures are effective tools for feature selection and model interpreta-
tion, allowing for the ranking of the most influential regressors. In particular, variance-based importance
measures (VIMs) are a prominent topic in both fields of statistics and global sensitivity analysis. This
is due to their accessible interpretation as variance shares of the explained variable. As proposed in [1],
this work focuses on a linear regression model between an explained real-valued output random variable 𝑌
and 𝑑 explanatory input random variables X = (𝑋1, . . . , 𝑋𝑑): 𝑌 = Xβ + 𝜀 with β ∈ R𝑑 is an unknown
vector of coefficients and 𝜀 is a centered Gaussian random error. It addresses some of the practical chal-
lenges that arise when the component of X are dependent inputs and the input dimensionality 𝑑 is large.
Specifically, the goal is to discuss the formulation and interpretation of Johnson indices [2, 3], which have
empirically demonstrated their value both in high-dimensional contexts and their ability to approximate the
not so well-known LMG indices [4].

We start by providing some theoretical elements and interpretations to define the context in which Johnson
indices can be used in comparison to LMG and PMVD indices [5]. In the literature of linear regression
analysis, VIMs are built from the decomposition of the coefficient of determination 𝑅2 which quantifies the
percentage of output variability explained by the model. A VIM associated with a regressor is thus defined
as its proportional contribution to 𝑅2, accounting for both its direct effect (correlation with𝑌 ) and combined
effects with other variables [6]. Various 𝑅2 decomposition strategies have thus been proposed, leading to
different interpretations. The choice of the 𝑅2 decomposition suitable for defining the VIM can then be
established based on desirability criteria:

• (C1) Proper decomposition: the sum of all shares should be equal to the 𝑅2;
• (C2) Nonnegativity: all shares should be nonnegative;
• (C3) Exclusion: if 𝛽 𝑗 = 0, then the share of 𝑋 𝑗 should be zero;
• (C4) Inclusion: if 𝛽 𝑗 ≠ 0, then the share of 𝑋 𝑗 should be nonzero;
• (C5) Grouping: all shares should tend to equate for highly correlated inputs.

The first four criteria were defined by Gromping [7], while the last one relates to regularization techniques
[8]. Criteria (C1) and (C2) are essential for interpreting VIMs as a percentage of 𝑅2. Criterion (C4) is also
fundamental to highlight inputs with direct influence. However, (C5) contradicts the exclusion property
(C3). If the interpretation is focused on the direct influence of the inputs on the model output, then (C3) is
appropriate; if the correlations among data can carry necessary information for the interpretation, (C5) is
relevant instead. In this context, the LMG and Johnson indices favor the (C5) criterion whereas the PMVD
indices (C3). In fact, both methods aim to decompose the 𝑅2, but they differ in how they average the
marginal contribution of each variable across all the permutations. LMG uses an arithmetic average while
PMVD weights these contributions based on the proportion of variance attributable to each variable.

To better understand and illustrate the concept of multicollinearity, we also use Venn diagrams on a two-
input regression model (𝑑 = 2), see Fig. 1. The Venn diagrams are formed by three circles associated with
the variances of 𝑌 (in purple), 𝑋1 (𝜎1 in blue) and 𝑋2 (𝜎2 in yellow), by two overlapping area measuring
the additional explanatory power of 𝑋1 (𝑎) and of 𝑋2 (𝑐), and by the area representing the combined effect
of the inputs on the model 𝑌 (X) (𝑏). We prove, in particular, (with a different demonstration from the
one of [9] which relies on geometrical arguments) that there is an equivalence between the LMG and the
standardized Johnson indices in the case of a two-input model [1].

Finally, we apply these indices to the well-known dataset of the R package AmesHousing, which contains
79 features describing house sale prices in Ames, USA [1]. The computational cost of the LMG and PMVD
indices is exponential with the number of input variables. It appears impossible to calculate them for the
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entire set of input variables. This example shows that there are cases where it is impossible to determine
the LMG and PMVD indices, and where it is necessary to use approximate methods to conduct sensitivity
analyses. In this case, we calculate the Johnson and the well-known SRC2 indices [1] for the set of 34
quantitative variables. We then determined the 10 most influential variables and we determine all the VIMs
for these 10 variables (see Fig. 2).

Figure 1: Interpretations of VIMs: Venn diagrams and desirability criteria. Figure 2: Results on the Ames housing dataset.
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Additive functional decomposition of arbitrary functions of random elements, under the form of
high-dimensional model representations (HDMR) [1] is crucial for global sensitivity analysis [2] and
more generally understanding black-box models. Formally, for random inputs X = (X1, . . . , Xd)

⊤,
and an output G(X), it amounts to finding the unique decomposition

G(X) =
∑

A∈D

GA(XA), (1)

where D = {1, . . . , d}, D is the set of subsets of D, and GA(XA) are functions of the subset of input
XA = (Xi)i∈A. Whenever the Xi are assumed to be mutually independent, such a decomposition
is known as Hoeffding’s decomposition. It is well known to allow the derivation of meaningful
Sobol’ indices for the analysis of the output variance, among others. Whenever the inputs are not
assumed to be mutually independent, several generalizing approaches have been proposed in the
literature [3-7], but at the price of imposing restrictive assumptions on the correlation structure or
lacking interpretability.

Our recent works [8] hightlights the necessity of proposing a new framework at the cornerstone
of probability theory, functional analysis, and abstract algebra to understand how Hoeffding’s
decomposition can be generalized in a more broader way to dependent inputs. By viewing random
variables as measurable functions, we prove that a unique decomposition such as (1), for square-
integrable black-box outputs G(X), is indeed possible under two fairly reasonable assumptions on
the inputs:

1. Non-perfect functional dependence;

2. Non-degenerate stochastic dependence.

While the first condition, extending non-multicolinearity, appears to very classical, the second
condition can be understood through the prism of angles between subspaces of L2, using a gen-
eralized notion of covariance between such subspaces. This originates from the following fomal
rationale. Denote σX the σ-algebra generated by X, and L2σX the space of square-integrable
σX -measurable real-valued functions (real-valued functions of X). From the proposed framework,
defining a decomposition such as in (1) equates to defining a direct-sum decomposition of L2σX of
the form

L2σX =
⊕

A∈D

VA,

where VA are some linear vector subspaces of functions of XA, which can be completely character-
ized.

In addition, novel sensitivity indices based on this generalized decomposition can be proposed, along
with theoretical arguments to justify their relevance. They first highlight that the popular SHAP
method to decompose predictions is theoretically sound if and only if the inputs are mutually
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independent. Besides, they lead to four new indices for quantifying the importance of inputs,
based on the variance decomposition of G(X). They allow the disentanglement of effects due to
interactions and the effects due to the dependence structure. Such indices will be discussed, and
a first illustration of the generalized decomposition involving Bernoulli random inputs, typically
used in failure tree modeling in the industrial world, will be presented.
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In this work, we first review the theory of global sensitivity analysis with optimal transport [1,2,5].
We also review recent applications [3,4]. We show that the associated global sensitivity measures
possess several relevant properties, such as zero-independence and max-functionality. The former
implies that the global sensitivity measure is zero if and only if the quantity of interest and the
input(feature/parameter) of concern are statistically independent. The latter implies that the
global sensitivity measure is maximal if and only if the quantity of interest is a deterministic
function of the feature of concern. We also show that if the squared Euclidean distance is used
in the cost function of the optimal transport, one obtains a decomposition which brings together
moment-independent and variance-based indices. In fact, it holds that the distance between the
distributions can be decomposed in three terms. The first term equals the individual variance-
based contribution. The second term equals the contribution to the output second order moment
and the third term accounts for contributions to any higher order moment. We call this third term
the Wasserstein Gap.

We then discuss the connection between optimal transport sensitivity and design of experiments,
introducing the notion of Wasserstein-Shapley value and discussing the properties of this notion.
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In the context of variance-based sensitivity analysis of functional outputs, a common goal is to
compute sensitivity maps (SM), i.e Sobol’ indices at each output dimension (e.g. time step for time
series, or pixels for spatial outputs) [1, 2, 3]. In specific settings, some works have shown that the
computation of Sobol’ SM can be speeded up by using basis decomposition employed for dimension
reduction (e.g. Principal Component Analysis, B-splines, wavelet, among others). However, how
to efficiently compute such SM in a general setting has not received too much attention in the GSA
literature.

In this work, we propose fast computations of Sobol’ SM, with a focus on statistical estimation of
these indices, using a general basis decomposition of output data yℓ(X), where (·)ℓ represents the
index of each output dimension. The functional basis decomposition of dimension m is given by a
linear combination of the basis coefficients vector c and the basis components vector vℓ:

yℓ(X) =

m∑

i=1

ci(X)vi,ℓ

We obtain closed-form expression of SM in function of the matrix-valued Sobol’ index of the vector
of basis coefficients, for all I ⊆ {1, . . . , d}, where d is the number of input variables. Then, we write

similar basis-derived formulas for the pick-freeze estimator of Sobol’ SM Ŝc
I

pf
(yℓ(X)) in function

of the normalized matrix-valued pick-freeze estimator of the vector of basis coefficients, as follows:

Ŝc
I

pf
(yℓ(X)) =

v⊤.,ℓ D̂
c
I

pf
(c(X)) v.,ℓ

v⊤.,ℓ Ĉov
pf
(c(X)) v.,ℓ

The relative cost in terms of mathematical operations between the basis-derived [2, 3] and pixel-
wise [1] approaches scales as the ratio between the number of basis components m and the output
dimensions L. When dimension reduction is possible, this ratio may be very small and the gain in
computational time allows to calculate both SM and their associated bootstrap confidence bounds
in a reasonable time.

As an application, we study the contribution of this work to a case in fluid mechanics: the idealized
and gradual dam-break of a non-Newtonian fluid [4]. It consists of a known volume of material
inside a reservoir delimited by the walls and a gate, which is lifted with a finite velocity and the
material flows downstream a horizontal plane or channel (Fig. 1). By computing the SM, we aim
to evaluate the influence of input variables over a chosen quantity of interest: the position of the
wavefront over time xf (t).
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Figure 1: Schematics of the case study (left) and time series of Sobol’ indices with associated
confidence bounds in shaded colors (right).

The input variables of the model are the initial fluid height H, lifting velocity of the gate VL,
fluid’s density ρ and rheological properties (yield stress τc and plastic viscosity µB). All input
variables were considered as uniformly distributed. By using Latin-Hypercube Sampling (LHS),
226 scenarios were generated and simulated by the finite-volume fluid dynamics solver ANSYS
Fluent. Then, Principal Component Analysis was applied as functional basis to reduce dimension
(m = 10, accounting for 99.9% of the variance) and the basis coefficients were metamodelled using
Gaussian Process Regression for fast prediction. To estimate the SM, 5000 pick-freeze samples
were used with 20 bootstrap repetitions. The results in Fig. 1 show that the influence of input
variables over the wavefront position vary significantly along time, except for ρ, highlighting the
time-dependent characteristics of the flow. The small difference between 1st order and total indices
indicates that interactions are small compared to the main effects. Overall, the basis-derived pick-
freeze method showed to be capable of obtaining SMs with an acceptable accuracy, while performing
less operations and allowing the bootstrapping technique in a reasonable computational time.
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For anyone wishing to perfom GSA1 on the output of a black-box model, the ANOVA2 framework,
relying on the estimation of the first-order and total-order Sobol’ indices, appears to be the most
enticing solution, since it combines both simplicity and explainability. Indeed, each subset of input
variables is assigned a specific share of variance equal to the variance induced by the associated
sub-function in the Sobol’-Hoeffding decomposition. Due to their nice mathematical properties,
the total-order Sobol’ allow to perform both the ranking and screening of input variables, making
them appear as some of the most attractive sensitivity measures. Unfortunately, when the output
variable is computed by a highly expensive computer code, the simulation budget required to
achieve an accurate estimation of Sobol’ indices is often prohibitive, unless constructing a surrogate
model, which is a challenging task in high dimension. In the light of this problem, the sensitivity
measures based on the HSIC3 offer a great alternative, as they are particularly easy to estimate,
even when the available data comes from a small Monte Carlo sample. However, while HSIC indices
are well adapted to screening, they are not recommended for ranking purposes, as comparing them
to one another is not mathematically rigorous.

In this context, the HSIC-ANOVA approach is a cutting-edge kernel method seeking to strike a
harmonious balance between Sobol’ and HSIC indices [1]. The key idea of this breakthrough is
to handle the input variables with ANOVA kernels (instead of more usual kernels such as the
Gaussian ones). This specific choice allows to derive a kernel-based ANOVA decomposition in
which the output variance is replaced by the HSIC between the input vector set and the output
variable. Unlike standard HSIC indices, for which there is no notion of order, the HSIC-ANOVA
decomposition enables the definition of kernel-based sensitivity indices at all orders, particularly
at the first and total orders, in the same spirit as Sobol’ indices.

To obtain such an ANOVA decomposition, the kernel selected for each input variable must be
ANOVA, meaning that is it must satisfy an orthogonality condition with respect to the input
marginal distribution. Unfortunately, for most parametric families of distributions encountered in
practice, it is pretty hard to find an ANOVA kernel which is also characteristic. The only exception
is the standard uniform distribution, for which there are many possible candidates in the literature,
including the so-called unanchored Sobolev kernels [1]. In almost all other cases, it is advisable to
orthogonalize the Gaussian kernel, but this implies an extra step of numerical integration whose
complexity will increase linearly with sample size.

When first introduced, the HSIC-ANOVA decomposition was praised for two main reasons:

(a) the fact that all HSIC-ANOVA terms can be accurately estimated from a single sample of
input-output observations, regardless of the dimension of the input space ;

1GSA: Global Sensitivity Analysis
2ANOVA: ANalysis Of VAriance
3HSIC: Hilbert-Schmidt Independence Criterion
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(b) the fact that the HSIC-ANOVA measure may be used as a cost function for Shapley values,
thus leading to HSIC-Shapley effects, a collection of importance measures combining most
expected properties in GSA.

However, a grey area persists around the HSIC-ANOVA framework, hindering its wider adoption
as a reference methodology in GSA. In fact, there are two main areas for improvement.

(P1) An obvious limitation of HSIC-ANOVA indices is their lack of interpretability, which is partly
due to the fact that the HSIC-ANOVA decomposition is not a direct consequence of the
Sobol’-Hoeffding decomposition. In particular, it is not clear which kind of extra information
is captured by the total-order indices (compared to their first-order counterparts). This lack
of transparency is a serious issue, as engineers are unlikely to apply a methodology without
having a thorough understanding of it.

(P2) The question of how to use HSIC-ANOVA indices for screening was not investigated in [1].

Our talk aims to provide some answers to these two problems. For the sake of simplicity, the
discussion is limited to the case where the input variables are mutually independent and all follow
the standard uniform distribution.

In response to (P1), the first part of the talk will reveal the inner workings of the HSIC-ANOVA
methodology and will establish a connection between the kernel feature maps and the dependence
patterns captured by the two types of HSIC-ANOVA indices. The key to greater interpretability is
to express the HSIC as a sum of squared covariances over the entire collection of random features
induced by the input and output kernels. In fact, adopting this viewpoint on the HSIC-ANOVA
decomposition allows to clarify which random features are captured at each order. Among other
benefits, this change of perspective will guide the construction of analytical test functions for which
HSIC-ANOVA interactions are controllable, ranging from negligible to dominant contributions.

In response to (P2), the second part of the talk will promote HSIC-ANOVA indices as a promising
solution for kernel-based independence testing. The starting point is to realize that the unanchored
Sobolev kernels are characteristic [2]. This ensures both the first-order and total-order indices
characterize independence. A straightforward strategy to test independence is to apply existing
methods for HSIC indices to the numerators of the first-order HSIC-ANOVA indices, because they
are simply HSIC indices computed with ANOVA kernels. Another possible strategy is to develop
specific test procedures for the total-order HSIC-ANOVA indices. It will be shown that three
different test procedures can be employed, each suited to a specific range of sample sizes. Finally,
an extensive simulation study will reveal that testing independence with the total-order indices
can be more powerful, especially when HSIC-ANOVA interactions come into play.
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Abstract

In modern science and engineering, computational models are popular tools for assessing the be-
havior of physical systems. They may be seen as maps associating some input parameters to
quantities of interest (QoI) related to the response of the system under study. Despite their in-
creasing fidelity, computational models remain simplified representations of the real system, and
their input parameters are often not perfectly known. As a result, the QoI predicted by such
models are tainted with uncertainties.

Bayesian inference constitutes a coherent framework for quantifying uncertainties and updating
them by taking into account all available information. This framework is based on a probabilistic
description of uncertainties and relies on the definition of a prior distribution, which encodes a
state of knowledge about some input parameters before making any observations. Then, this
prior state of knowledge can be updated through the derivation of a posterior distribution, which
summarizes all the available information once new data have been observed. In particular, the
general framework of Bayesian inference can be applied to inverse problems, in order to update
uncertainties of input parameters of computational models from noisy and limited observation
data.

The selection of the prior distribution is of utmost importance in the framework of Bayesian
inference. This even constitutes a common criticism directed at Bayesian inference. The prior
enables the integration of both qualitative and quantitative information related to parameters,
including diverse sources such as past experiments, data taken from existing literature, or beliefs
of one or several analysts (i.e., expert judgment). Hence, encoding such various information into
a single probability distribution appears as a non-trivial task. In this context, the field of Robust
Bayesian Analysis, introduced in the early 90s, provides theoretical and computational foundations
for the analysis of the influence of the choice of the prior on Bayesian inference results [1,2]. It
aims at quantifying the range of variation of a given QoI by assuming that the prior belongs to a
set of probability distributions, which represents all the possible choices for the prior.

More recently, a new Uncertainty Quantification (UQ) branch, named Robustness Analysis, has
emerged in the field of sensitivity analysis [3,4]. It aims at measuring the impact of the choice of
an input distribution, by studying variations of a QoI with respect to this choice. In particular,
an interesting method is given by Perturbed-Law based Indices (PLI), originally introduced in
the field of reliability analysis [5,6]. These sensitivity indices are simply defined by the relative
variation of the QoI, for a given perturbation of the input distribution. In the recent literature,
PLI have been proposed for various types of QoI, including failure probabilities [5,6], quantiles [4]
or superquantiles [3].

We propose to study the influence of the choice of the prior distribution, through the definition of
PLI dedicated to Bayesian inference. The definition of the proposed PLI is based on the recent work
of [4], which provides a formal and coherent framework for perturbing input distributions. Such a
framework is based on concepts taken from information geometry, notably the Fisher distance on
manifolds of probability distributions.

Furthermore, we show that the proposed PLI can be reformulated as the relative variation of
some failure probabilities, by using the so-called BUS (Bayesian Updating with Structural relia-
bility methods) framework introduced in [7], which establishes an equivalence between Bayesian
inference and a reliability analysis problem. Such a reformulation of the proposed PLI is particu-
larly appealing from a computational point of view, since it allows the use of estimation techniques
tailored for PLI of failure probabilities [5,6]. As a result, the proposed PLI are estimated through
a reverse importance sampling mechanism [5].

76



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

The proposed approach is applied to various Bayesian inverse problems with varying complexity.
The results suggest that the proposed Bayesian PLI enable to identify the parameters for which
the choice of the prior has a significant impact on Bayesian inference results. Moreover, results
underline that the proposed approach remains feasible in the case of Bayesian inverse problems
with nonlinear models and possibly high-dimensional inputs.
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Structural reliability analysis is a crucial part of designing systems that can withstand uncertainty in
loading and material properties. Reliability methods provide solutions for evaluating failure
probabilities, which can be highly sensitive to input variables. Understanding how changes in input
variables affect failure probability is essential for optimization and safety enhancement.
Two kinds of sensitivity analysis of failure probability have been investigated with respect to
deterministic and random parameters. The sensitivity measure considered herein is the sensitivity
analysis of failure probability with respect to distribution parameters, with the sensitivity index
defined as the partial derivative of failure probability with respect to the distribution parameters. Most
of existing methods for computing such partial derivative have been developed as the post-processing
step of an existing strategy for reliability analysis. Based on first-order reliability method (FORM) and
second-order reliability method (SORM), the sensitivity of failure probability is computed with the aid
of the so-called design point [1, 2]. Identifying the design point in highly nonlinear problems is
challenging, making this sensitivity analysis method unsuitable for such cases. Another approach is
simulation methods, such as the crude Monte Carlo Simulation [3], Importance Sampling [4], Lines
Sampling [5] and Subset Simulation [6]. A key advantage of simulation methods is that the samples
generated for estimating failure probability can be post-processed for sensitivity analysis without the
need for additional structural analyses. However, the accuracy of failure probability relies greatly on
the quality of sample generation, leading to a significant drop in computational efficiency for small
failure probability problems. To decrease the number of structural analyses, surrogate models are
adopted with combination of the simulation methods for sensitivity analysis, such as the Kriging
model [7]. Although computational efficiency can be enhanced with the help of surrogate models, this
introduces new challenges related to the construction of the surrogate model. In summary, the
effectiveness of sensitivity analysis methods is significantly affected by the underlying reliability
analysis techniques used. The method of moments [8] has been widely used for reliability analysis,
demonstrating both efficiency and accuracy in addressing nonlinear problems and those with small
failure probabilities. A sensitivity estimation framework based on the method of moments was
proposed [9], focusing on methods that utilize the first, second, and fourth moments. Building on this
approach, an analytical sensitivity estimation method using the fourth moment has been developed,
with inputs modeled as normal random variables.
The present work introduces a third-moment method for estimating the partial derivatives of failure
probability with respect to the mean, standard deviation, and skewness of input random variables.
Assuming the variables are independent, the sensitivity index is formulated using the third-moment
reliability index. An efficient numerical algorithm is developed, enabling the sensitivity index to be
computed as a byproduct of the reliability analysis. Numerical examples demonstrate that the proposed
method accurately estimates the sensitivity of failure probability with respect to the mean and standard
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deviation. Additionally, for random variables with small positive or negative skewness, the sensitivity
of failure probability with respect to skewness can be reliably estimated.
This study offers three key innovations: (1) It is the first to provide a comprehensive investigation of
the third moment method for sensitivity estimation. (2) It includes a detailed numerical algorithm
based on the dimension reduction method, where all required inputs are obtained as byproducts of the
reliability analysis. (3) It explores the derivative of failure probability with respect to skewness
through practical examples.
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In recent years, a growing interest was taken in studying the robustness of a model output to a
potential misspecification of input uncertainties [1, 2]. In a common uncertainty quantification
(UQ) scheme, based on a numerical model G which uncertain inputs X1, . . . , Xd are random
variables, and a given QoI defined on the output Y = G(X1, . . . , , Xd), this means considering a
whole range of potential laws for theXi. The idea initially proposed in [3] is to apply a perturbation
to the density fi0 representing the baseline distribution of the i-th input Xi, and estimate the
corresponding perturbed QoI.

This perturbation approach could be profitably extended to situations involving more advanced
UQ tools such as sensitivity indices or metamodels. Here we propose a first exploration of how
the perturbation method introduced in [4], which is based on the Fisher distance, could be applied
in UQ studies involving gaussian process (GP) metamodels. To do so, we define I(θ) the Fisher
information Matrix (FIM) associated to the law of a GP Zθ with hyper-parameters θ ∈ Θ:

I(θ) = −E
[
∂2 ln fZ(θ, z)

∂θ∂θT

]
,

where fZ(θ, ·) is the (gaussian) density of the random process Zθ, and z = [z(n)]n=1,...,N the vector
of observed outputs of the model at design points x(1), ...,x(N). This matrix induces a metric on
Θ the parametric space in which the vector of hyper-parameters lies. The distance between two
processes with parameters θ0 and θ1 is then given by:

dF (θ0,θ1) = inf
γ∈P(θ0,θ1)

∫ 1

0

√
γ̇(t)TI(t)γ̇(t)dt,

P(θ0,θ1) denoting the set of path joining θ0 to θ1.

In this setting, each law at distance δ from the baseline one fZ(θ0, ·) can be seen as a perturbed law
at level δ. The principle of robustness analysis is then to consider Fisher spheres centered in θ0 with
growing radius, and find, for each perturbation level, the most impactful model towards the used
QoI. It can be noted that in the specific case of GP surrogate models with stationary covariance
kernels, the latter can be characterized by a probability density function in the Fourier space thanks
to Bochner’s theorem. Hence the described perturbation method could be implemented using this
spectral representation of the law of the process.

In the most simple case, one can examine the robustness of an output probability when estimated
through a GP emulator of a costly numerical model. But GP are also used to sequentially select
numerical experiments, using some uncertainty reduction criteria, in order to estimate efficiently
the target QoI with a limited computational budget. It is then possible to evaluate the robustness
of the QoI as well as the employed criterion as regards the law of the GP. We will illustrate this
principle on very simple toy-models as well as on well-known examples of the UQ community.
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Energy system optimization models (ESOMs) have emerged as valuable tools for guiding present-
day decisions for the energy transition based on assumptions about the future. These future
assumptions hold much uncertainty, which propagates to the model outputs. If not considered,
this uncertainty can lead to unintended future outcomes. One way to address this uncertainty is by
identifying the most influential parameters on the model output variability. With this information,
we can refine the corresponding assumptions, or make present-day decisions more resilient to them.

Global sensitivity analysis (GSA) is a powerful tool for determining the most influential parameters
on a model’s output variability [1]. However, GSA can be challenging for computationally intensive
models with thousands of parameters. ESOMs usually fall into this classification due to the
required spatial and temporal resolution and the energy sectors they consider. GSA via variance
decomposition for Sobol indices requires N · (p + 2) model evaluations, with p being the number
of model parameters (on the order of 102-103) and N a number greater than 500 [2]. The model
evaluations required for GSA can significantly decrease via the Morris method, requiring r · (p+1)
model evaluations with r being the number of trajectories (often between 5 and 50). However,
the Morris method mainly serves for screening without quantitative information on uncertainty
contributions from parameter interactions [1]. Due to these limitations, performing GSAs on large-
scale ESOMs with quantified uncertainty contributions is a current challenge.

In this work, we propose an efficient method for GSA of computationally intense ESOMs. For
this purpose, we employ derivative-based global sensitivity measures (DGSMs), derived from the
expected square of the model derivatives with respect to each parameter. DGSMs are a promising
GSA alternative, as calculation of the DGSMs requires a sample size, N , of model evaluations,
independent of the number of model parameters, while providing an upper bound on the total
Sobol indices [3]. DGSMs combine the quantitative benefits of Sobol index-based methods with
the computational efficiency of the Morris screening method.

Calculating the DGSMs, however, requires derivatives of the model outputs with respect to the
input parameters. Optimization problems don’t have an analytical form relating the decision
variables to the model parameters. Therefore, there’s no analytical expression for the derivatives.
However, derivatives can be calculated at the optimal point by implicit differentiation of the set of
Karush-Kuhn-Tucker (KKT) conditions [4]. The KKT conditions provide a set of necessary and
sufficient conditions for optimality. The KKT conditions take the form K(θ, z∗) = 0, where θ are
the optimization problem parameters and z∗ is a vector containing the optimal decision variables
x∗ and the problem dual variables (λ∗, µ∗). Implicit differentiation stems from the implicit function
theorem, which states that given an implicit system of equations, F (x, y), and a point (x0, y0) at
which F (x0, y0) = 0 and JyF (x0, y0) ̸= 0, there exists an explicit system of equations y(x) on an
interval containing x0 such that JyF (x0) = −[JyF (x0, y0)]

−1 · JxF (x0, y0). As long as the partial
Jacobian of the KKT conditions, JzK(θ, z∗) is non-singular, one can apply the implicit function
theorem to the KKT conditions to obtain the sensitivities of the model decision variables to the
model parameters, Jθz

∗(θ) (Equation 1).

Jθz
∗(θ) = −[JzK(θ, z∗)]−1 · JθK(θ, z∗) (1)
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Implicit differentiation of an optimization problem’s KKT conditions has been applied in several
disciplines such as process controls for determining on-line parameter sensitivities, machine learning
for gradient-based neural network training, and energy systems optimization for calculating emis-
sions factors. In this work, we use this technique to enable DGSM-based GSA for computationally
intensive ESOMs for which calculation of Sobol indices is not feasible.

We carry out our DGSM-based GSA via implicit differentiation on a small ESOM and compare the
resulting DGSMs to the total Sobol indices, ST , calculated via variance decomposition using the
SALib library in Python [5]. Our model minimizes the cost of n operating electricity generation
technologies, xi, with costs, ci, subject to maximum generation constraints, Gi, and a total load,
L, which must be satisfied.

Our preliminary results show that for most model parameters, DGSM-based GSA provides upper
bounds for the total Sobol indices for with 78% less computation time (Table 1). The piece-wise
constant nature of the decision variables of linear optimization problems with respect to objective
function coefficients leads to zero-valued derivatives, highlighting a limitation of our method. We
address this limitation by adding a quadratic penalty term to the objective function. Overall, we
propose a method that enables GSA of computationally intense ESOMs, allowing to better-consider
uncertainty in present-day decision-making.

Table 1: Computation time and sensitivity measure comparisons for total Sobol indices, ST , cal-
culated via variance decomposition, and DGSMs calculated via implicit differentiation.

sensitivity of model decision variable, xi

to model parameters:
method computation time L Gj ̸=i Gj=i cj ̸=i cj=i

DGSM 16 min 1.4 0.006 0.02 0 0
DGSM (+ penalty term) 18 min 1.1 0.003 0.02 0.2 0.8
ST 72 min 0.5 0.004 0.01 0.1 0.6
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This research is motivated by applications of global sensitivity analysis (GSA) towards mathe-
matical models of engineering problems. Such problems are common in computer experiments,
where a physical phenomenon is studied with a complex numerical code, and GSA is employed to
increase understanding of how the system works, reduce the problem’s dimensionality, and help
with calibration and verification. In this context, an important question for GSA is: ‘Which model
inputs can be fixed anywhere over its range of variability without affecting the output?’.

The most common GSA approach examines variability using the output variance. The variance-
based total sensitivity indices provide the proportion of variance explained by the input variables.
Such tools are limited to second-moment information, which presents a challenge if the underlying
distribution is highly skewed or multi-modal. Entropy-based measures overcome this limitation, as
they are applicable independent of the shape of the distribution. However, entropy-based indices
have limited application in practice, mainly due to the heavy computational burden, as knowledge
of conditional probability distributions is required.

In contrast, for a differentiable function, derivative-based methods can be more efficient. An
inequality linking variance-based GSA and derivative-based measures has been established [1, 2]
to detect un-influential input variables. A recent study [3] has proposed a derivative-based upper
bound for entropy-based sensitivity indices, which is computationally cheap to estimate.

In this paper, we present a tighter entropic upper bound by including a differential mutual informa-
tion correction that accounts for the impact of interactions between dependent input variables. We
provide proof that for a differentiable deterministic function y = g(x) : Rd → R with continuous
random inputs, there exists an upper bound for the conditional entropy-based SA indices:

E[H(Y |X∼i)] ≤ H(Xi) + li − I(Xi;X∼i) (1)

where ∼ i indicates the index ranges from 1 to d excluding i. H(Xi) is the differential entropy
of the input variable Xi and li is the expected log-derivatives li = E [ln |∂g(x)/∂xi|]. The mutual
information I(· ; ·) is a moment-independent quantification of the statistical dependence between
variables reflecting their amount of shared information. As the mutual information is nonnegative,
the new upper bound is tight when dependencies among input variables are known or suspected.
This greatly improves the screening power, as the effectiveness of the screening improves with the
tightness of the upper bound.

Another issue for the derivative-based upper bound is the lack of verification for high-dimensional
problems. The simulation of differential entropy, mutual information, and related information
theoretic quantities typically proceeds using ‘plug-in’ Monte Carlo estimators where the densities
required are approximated using nonparametric kernel density estimation techniques. However,
it is well-known that even in dimensions as low as 10, kernel density estimation is prohibitively
data-inefficient [4].

To overcome this issue, we utilize neural density estimation techniques, including recent algorith-
mic advancements such as MINE [5], KNIFE [6], and REMEDI [7], for efficient approximation
of information-theoretic quantities in high dimensions. These estimators are differentiable with
respect to the data, enabling the global sensitivity measures to be optimized for outer-loop tasks
in engineering design.

Simulation-based prototyping for engineering design problems often involves high-dimensional

84



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

spaces of possibly correlated and dependent control variables. This paper extends the derivative-
based entropic upper bound to high-dimensional and dependent inputs, thus providing a versatile
and efficient tool for general engineering applications.
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Good point sets for quasi-Monte Carlo (QMC) integration are usually constructed by selecting
parameters to minimize a figure of merit (FOM) that measures the discrepancy between the em-
pirical distribution of the points and the uniform distribution [1, 2, 6]. These FOMs often give
weights to the different subsets of coordinates, to account for their relative importance, as done
by the software in [7, 8], for example. The weights should reflect the variance contributions (or
sensitivity indices) of these subsets, which are typically unknown and costly to estimate.

A much simpler alternative is to bypass these FOMs and simply draw the parameters of the QMC
rule at random from some distribution. It turns out that for the popular QMC constructions, the
probability of drawing bad parameters (that give a large RQMC variance) is pretty small.

With randomized QMC (RQMC), we randomize the points r times independently to compute r
independent replicates of the unbiased RQMC estimator, and we usually take the empirical mean
and variance of these r replicates to estimate the true mean (the integral) and perhaps compute a
confidence interval [9]. When the QMC parameters are selected at random, independently for the
r replications, it may be better to replace the empirical mean by a more robust estimator such as
the median or something more refined, so that the outliers that may come from the rare unlucky
parameter choices have little impact on the final estimator. This idea was proposed and studied
recently in [3, 4, 5, 10, 11].

In this talk, we review these recent studies and we report on experiments that compare the mean
square error (MSE) of various estimators (the mean, the median, and others) in RQMC settings.
We also look at how to compute confidence intervals for the mean in these settings.
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Aurélien Alfonsi
Julien Reygner
Center for Training and Research in Mathematics and Scientific Computing
(CERMICS), Ecole des Ponts ParisTech, Champs-sur-Marne, France.

Anna Dutfoy
EDF R&D, Performance and prediction of industrial risks for park simulation
and studies (PERICLES), Paris-Saclay, France.

Fabrice Zaoui
EDF R&D, National Laboratory for Hydraulics and Environment (LNHE),
Chatou, France.

Hydro-morphodynamic modelling is affected from different sources of uncertainty, which occur
in process-based models, such as inaccuracy in the model inputs, errors in model structure (e.g.,
poorly described or omitted physical processes), and from limited computing resources. This study
is motivated by the analysis and the characterization of some of these uncertainties, elucidating the
factors contributing most significantly to the variability of the model output by employing Sobol
sensitivity analysis indices [1]. In practice, the computation of Sobol indices, which involves the
stochastic estimation of statistical moments and sensitivity indices, is commonly performed using
the Monte Carlo method. However, this approach can be computationally expensive, and the
runtime can be significantly reduced by employing a surrogate model in place of the high-fidelity
solver. One such surrogate modeling technique is the Polynomial Chaos Expansion (PCE) strategy
[2], which approximates the model output Y = f(X), where X ∈ DX ⊂ Rd, by a polynomial Ŷ of
degree P , constructed from a set of polynomial basis functions {Φα}α defined on DX , which are
orthonormal with respect to the law of the input vector X. The PCE approximation is defined as:

Ŷ =
∑

|α|≤P

yαΦα(X)

where {yα}α are the coefficients of Y in the orthonormal basis {Φα}α.
The inherent non-linearity of processes in morphological models often causes model outputs to
exhibit low sensitivity to input variations until a critical morphological threshold is reached. To
accurately represent this variability using a global polynomial approximation, high-degree poly-
nomials would be required, leading to increased numerical complexity. Drawing inspiration from
regression trees in supervised learning, we propose an adaptation of the Polynomial Chaos Ex-
pansion (PCE) method, called Tree-PCE [3], to address this challenge in complex models. This
approach decomposes the input domain into hyperrectangular subdomains, indexed by a binary
tree, where local PCE is applied within each subdomain R. The Tree-PCE global metamodel
obtained from local metamodels defined by

Ŷ =
∑

R

∑

|α|≤P

yRαΦ
R
α (X)
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with {ΦR
α}α being a polynomial basis orthonormal with respect to the low of X on the subdomain

R and {yα}Rα are the coefficients of Y in the orthonormal basis {Φα}Rα .

By minimizing the influence of irregularities
within these subdomains, the method enables
the use of local low-degree polynomial approxi-
mations. The resulting local metamodels effec-
tively capture the model’s behavior in each re-
gion, significantly improving the representation
of complex dynamics. In contrast, a global poly-
nomial model would require a much higher de-
gree to achieve comparable performance. More-
over, a by-product of this approach is an analyt-
ical formula allowing the computation of global
Sobol indices from the coefficients of the local
PCE with almost no additional cost. Comparison of approximating a discontinuous

function by standard PCE and Tree-PCE.

The idea of using local Polynomial Chaos Expansions (PCE) has already been explored in the
literature. For instance, works such as El Garnoussi et al. (2020) [4] and Dréau et al. (2023) [5]
have proposed techniques to decompose the input domain into subdomains and apply local PCE
within each. Additionally, Poette and Lucor (2012) [6] introduced an iterative PCE method to
enhance the accuracy of non-linear models. However, these approaches have not yet achieved the
capability to directly compute Sobol indices from the obtained metamodel coefficients, which is a
distinctive advantage of our method.

In conclusion, the proposed method provides a cost-effective solution for uncertainty quantification
of complex model behaviors, particularly in hydro-morphodynamic modeling, by enhancing the
precision of metamodeling and Sobol indices estimation. The results demonstrate its potential to
significantly improve the accuracy and reliability of model predictions, especially when addressing
complex dynamics.
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Uncertainty quantification (UQ) in computer models has become increasingly important over recent
decades, particularly in the context of risk assessment. Numerous techniques exist to propagate
aleatory uncertainty, enabling the evaluation of risk-oriented quantities of interest, such as low
failure probabilities or high-order quantiles. However, these evaluations often rely on subjective
assumptions, including the choice of the input joint probability distribution, which may be based
on limited information. Therefore, input densities are tainted with epistemic uncertainties which
have to be taken into account, especially in risk or safety analyses. The core idea is to find a
relevant framework to model such uncertainties and to evaluate the robustness of the estimated
key risk measures (typically, failure probabilities, quantiles or any other risk measure) with respect
to these assumptions on the input probabilistic modeling.

On the one hand, a first solution is to adopt a “sensitivity analysis” viewpoint. More specifically,
robustness analysis (see, e.g., [1, Chap. 6]) offers a useful approach by quantifying how perturba-
tions in the assumptions impact the key quantities of interest on which industrial decisions are
based. Among several methods, the Perturbed Law-based sensitivity Indices (PLI) have been pro-
posed by [2] as a way of measuring the impact of perturbations of input densities (in a parametric
case) on a risk measure (e.g., a failure probability, a high-order quantile or a superquantile in [3]).
More recently, a novel formulation of these indices has been proposed in [3] by revisiting the inti-
tial formulation through an information-geometric approach, leading to a more sound and rigorous
framework for the input-perturbation statistical procedure.

On the other hand, the modeling, quantification and propagation is an old topic in the UQ commu-
nity. Several mathematical frameworks have been proposed and studied. Among others, two are of
specific interest here: the Optimal UQ framework [5] and the Info-gap framework [6]. In Optimal
UQ, epistemic uncertainties are handled through solving an optimization problem leading to max-
imizing a risk measure (e.g., a quantile) over a class of bounded distributions satisfying moments
constraints. As for Info-gap, it relies on maximizing the risk measure over increasingly large input
uncertainty domains. By looking at those formulations closer, it appears that methodological links
can be drawn from the two frameworks and the PLI-based robustess analysis described above.
More specifically, connections and differences can be derived from several keypoints such as the a
priori assumptions made, the way perturbations/optimization are solved as well as the final results
available at the end of each analysis.

Thus, the goal of this work is to exhibit, discuss and analyze these links both theoretically and
numerically, in the context of risk-oriented analyses. From a sensitivity analysis perspective, such
a work aims at pointing out the fruitful connections that handling “epistemic” or “second-level”
uncertainties impose between this field and the UQ practice in engineering. As a perspective, one
can wonder whether designing “optimal” sensitivity measures would be possible in order to assess
the robustess of any risk measure with respect to prior assumptions on the input probabilistic
model.
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[2] Lemâıtre P., E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, “Density
modification-based reliability sensitivity analysis”, J. of Stat. Comp. and Simul., 85(6):1200–1223,

90



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

2015.

[3] Gauchy C., J. Stenger, R. Sueur and B. Iooss, “An Information Geometry Approach to Ro-
bustness Analysis for the Uncertainty Quantification of Computer Codes”, Techno., 64(1):80–91,
2021.

[4] Iooss B. and V. Vergès, “BEPU robustness analysis via perturbed law-based sensitivity indices”,
Proc. of the Inst. of Mech. Eng (Part O)., 236(5):855–865, 2022.

[5] Stenger J., F. Gamboa, M. Keller and B. Iooss, “Optimal Uncertainty Quantification of a risk
measurement from a thermal-hydraulic code using canonical moments”, Int. J. for Unc. Quant.,
10(1):35–53, 2020.

[6] Ben HaÏm Y., “Info-Gap Decision Theory: Decisions under Severe Uncertainty”, Elsevier,
Second Edition, 2006.

[ Vincent Chabridon; EDF R&D, 6 quai Watier, 78401 Chatou, France. ]
[ vincent dot chabridon at edf dot fr – ]

91



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

The universe of uncertainty that didn’t hide

Andrea Saltelli
(1) UPF Barcelona School of Management, Barcelona, Spain. (2): Centre for
the Study of the Sciences and the Humanities, University of Bergen, Bergen,
Norway; andrea.saltelli@gmail.com,www.andreasaltelli.eu

Nate Breznau
SOCIUM Research Center on Inequality and Social Policy, University of Bre-
men, Germany

Alessio Lachi
Department of Statistics, Computer Science, Applications “Giuseppe Parenti”
(DiSIA), University of Florence, Viale Giovanni Battista Morgagni 59, Flo-
rence, 50134, Italy

Arnald Puy
School of Geography, Earth and Environmental Sciences, University of Birm-
ingham, Birmingham, B15 2TT, United Kingdom

In a series of recent papers [1, 2] we have offered global sensitivity analysis (GSA) [3] as the solution
for the recently manifested problem of analytic variability in applied statistical and econometric
work, commonly associated with the so-called “Garden of Forking Paths” [4, 5] that analysts engage
with when setting up an investigation. Our title refers to the expression “A universe of uncertainty
hiding in plain sight” [6] that has been used to comment on the results of multi-analysis studies
displaying unexpected variability. In a sense, in our SAMO community of practitioners engaged
in sensitivity analysis, this uncertainty was indeed always in plain sight – and was chased with
an array of techniques going from efficient design of numerical experiments to setting-specific
sensitivity analysis practices. Considering these practice as self-evident may constitute a sort of
SAMO-specific bias, especially given the complex and nuanced relation that quantification sciences
have with uncertainty across different disciplines, especially at the interfaces between science,
society and policy [7]. Thus, we look at the issue of “analytic flexibility” discovered in this new
context and reconnect it to how GSA has been taken up in several disciplines to test the quality
of a quantification. In particular we recall early econometricians’ works [8, 9] suggesting global
sensitivity analysis (GSA) to test the robustness of a quantitative inference, and comment on the
recommendations’ slow take up [10] in both econometrics and other disciplines. We show how today
a mature [11] GSA approach permits analysts to properly chart gardens of forking paths before
venturing into one, or to make sense of a multi-analyst experiment after it has been done. GSA
allows the “universe of uncertainty” hidden in multi-analyst studies to be unveiled (uncertainty
quantification) and characterised (sensitivity analysis proper), especially in relation to pattern of
strong dependencies of the inference upon high order interaction terms that appear to characterise
the experimental settings of multi-analyst studies [12]. We illustrate our treatment of a a recent
multi-analyst study from Breznau and co-workers [13], that we extend here to a different policy
setting. We call our application of GSA to the garden of forking path a “modelling of the modelling
process” [14, 15] (MOMP), detailing the differences between this and a more recent “multiverse
analysis” [16]. We trace a path from global sensitivity analysis – often concerned with mostly
parametric uncertainty – t0 MOMP – where the modelling process is opened up to investigation –
to sensitivity auditing [17] where the policy dimensions of an analysis are questioned. We conclude
offering a programming environment for these studies.
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We present a generalization of the active subspace method called “global active subspace method”,
and its corresponding sensitivity measure called “global activity scores”. The new methods are
based on the expectation of finite-differences of the underlying function, as opposed to the gradient
information in the active subspace method. We will present theoretical and numerical results show-
ing the advantages of the new methods. In particular, we will present numerical examples where we
compare the results of the global sensitivity analysis of some models using Sobol’ sensitivity indices,
derivative-based sensitivity measures, activity scores, and global activity scores. The numerical
results reveal the scenarios when the global activity score has advantages over derivative-based
sensitivity measures and activity scores, and when the three measures give similar results..
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Air and water pollution are now a major public health issue, and developing efficient detection 
methods to better monitor this pollution is essential to reduce the risk of exposure. Innovative 
materials such as nanomaterial-based sensors [1] have been proposed for their high sensitivity 
to different chemical species in air and water and their ability to detect them even in very low 
concentrations. However, if in laboratory these sensors are able to show encouraging results, 
the passage in real conditions generally pose difficulties. This is often due to the fact that these 
sensors are not very selective, and that in addition to reacting to changes in the concentrations 
of the pollutants of interest, they may also depend on several other environmental variables, 
such as temperature or relative humidity.  
 
As the calibration relationship between the sensor outputs, the pollutant concentrations and the 
other environmental variables is often unknown, two distinct phases are needed for these 
sensors to be used in uncontrolled environments. In the first step, this relationship is estimated 
using labelled data provided by reference sensors. In the second step, this relationship is used 
to predict the pollutant concentration from the sensor outputs only. Several factors make this 
estimation challenging: the potential existence of unmeasured but influential pollutants, the 
measurement noise on the input and output data, and the likely non-linearity of the calibration 
relationship (see [2,3] for more details). 
 
A key point of the calibration process is the selection of the appropriate environmental variables 
in the prediction model. In fact, due to strong correlations between environmental variables, 
one often observes that the calibration model performance improves when including a variable 
not directly influencing the sensor. On the other hand, this improvement actually constitutes 
“overlearning”, as it does not transfer to times or places where the correlations between 
environmental variables are different. Conversely, if one does not take into account an 
environmental variable that has a true influence on the sensor, one directly degrades its 
measurement performance. Identifying the optimal number of environmental variables to 
include in the calibration process for effective sensor deployment is therefore critical.   
 
The present contribution focuses on this selection process. Based on experimental data, and  
simulated data (designed to be similar to the experimental one), we show that conventional 
sensitivity analysis techniques are confronted with considerable difficulties due to measurement 
noise and due to the high degree of correlation between variables. Similarly, we show that linear 
regressions and statistical tests allowing to identify the variables with very limited influence on 
the sensor responses are hindered by unobserved variables and do not fully answer the question.  
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As an alternative, we propose a new variance-based selection method. It allows a better 
compromise between significant influence on the sensor and noise levels for their measurement 
by auxiliary sensors.  
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The growing complexity of modern power systems calls for sophisticated protection functions in
order to ensure the correct operation as well as the reliability, quality and security of supply.
Testing the protection functions implemented in protection equipment/systems is, hence, a vital
activity for ultimately preventing the potentially disruptive consequences of protection failures.

In general, any testing activity requires three main components:

1. What to test, i.e., the Device Under Test (DUT), whose ability to operate based on man-
ufacturers’ specification is tested under realizable power system conditions.

2. Where to test, i.e., the platform over which to conduct the tests, which is usually based
on a real-time hardware-in-the-loop simulation test set-up to investigate the DUT behavior
under close-to-operation conditions.

3. How to test, i.e., the methodology defining which and how many tests to conduct in each
experiment, by deliberately varying different factors potentially having an impact on the
system response.

In power system protection testing, while the first two components are well established, the testing
methodologies are still less mature and quite fragmented, and are thus the focus of our work. Har-
monization efforts have been produced by national and international standards, such as the IEC
60255-121:2014 standard [1], which was issued with the intent to address the lack of uniformity
among testing methodologies, prevent misunderstandings among stakeholders, and produce a uni-
form procedure to evaluate and compare performance claims from different manufacturers. The
testing methodology recommended by the IEC 60255-121:2014 standard [1] is implicitly based on a
(replicated) full factorial design, which may not be compatible with the maximum number of tests
that the operator can afford in each experiment. For example, the testing activity performed in
[2] based on such full factorial design consisted of almost 100,000 tests; as only 5 tests per minute
were possible, this translated into about 40 days of tests.

Power system operators often work in resource-saving contexts, and, not rarely, time/money con-
siderations are adopted to justify the “arbitrary” or “convenient” selection of which and how many
tests to perform. Such common practice can be overcome by the statistical Design Of Experiments
(stat-DOE), which combines the strength of the classical DOE with the power of the statistical
approach to aid in both properly laying out a resource-saving experimental plan and conducting
robust statistical analysis of the data.

The stat-DOE was an integral part of the smart grid interoperability testing methodology proposed
in [3]. The relevance of the stat-DOE was shown in [4], which applied the methodology of [3] for
testing the interoperability of a metering infrastructure. However, in [4], a full factorial design was
employed, which quickly undergoes the curse of dimensionality as the number of factors grows.

In [5], it was proposed to integrate the stat-DOE in the power system protection testing especially
in resource-saving contexts. In particular, it was practically demonstrated how the stat-DOE can
aid in the optimal selection of the tests and in the systematic investigation of the effect of different
factors, it was proven the superiority of modern designs over classical designs (such as full and
fractional factorial), and replicable guidelines were elaborated for the application of the stat-DOE
in the performance testing of power system protection functions.

Leveraging on [5], we go one step further by showing how the stat-DOE can be employed to test
the performance of different DUTs coming from different manufacturers. In our work, the DUTs
are physical relays where the distance protection function is implemented, the latter being the

98



11th International Conference on Sensitivity Analysis of Model Output, April 23–25 2025, Grenoble, France

power system protection function most commonly adopted in transmission systems. The distance
protection function, which is subject of the testing activity in our work, estimates the location of
the fault on the transmission line based on the DUT internal fault location algorithm and using
current and voltage measurements coming from the field.

Following the recommendations of the IEC 60255-121:2014 standard [1], various factors potentially
affecting the DUT performance are considered, such as fault resistance, fault location, fault type
and fault inception angle. Special attention is placed on the type of design used for the optimal
selection of the tests to conduct, owing to the well-known challenges of time/money limitations
often affecting the testing activity. The response measured to quantify the distance protection
performance is the DUT operate time (i.e., the interval between the time at which the fault
happens and the time at which the relay sends the trip signal). As the interest of the operator
is, often, whether the DUT operate time exceeds a pre-defined threshold, the test results are also
analyzed in terms of pass/fail outcomes.

By applying the stat-DOE workflow, we show how building a surrogate model of the fault location
algorithm can be of practical use to validate the performance claims of different DUTs and hence
detect potential internal inconsistencies in a cheap yet robust manner before the field implemen-
tation. Also, we demonstrate how the stat-DOE can effectively support the definition of pass/fail
criteria based on specific requirements of the transmission system operators.

Although in the first place the purpose of the testing activity is usually not directly related to
Sensitivity Analysis (SA), the operator may be interested in identifying which factors mainly drive
the degradation of the DUT performance in order to support the definition of further experiments.
By interpreting the test results in terms of pass/fail outcomes, we recast the problem into the
“factor mapping” SA setting, and we recommend the operator to employ a simple statistical test for
identifying the factors to which the DUT performance is most sensitive. If additional experiments
are needed, this may instruct the operator e.g., to sample the most important factor(s) at more
levels, and/or to neglect those which turned to have minimal impact on the DUT performance.

Overall, the attained results allow us to claim that integrating the stat-DOE into the testing activity
of power system protection can overcome the limitations of the existing testing methodologies, and
that, at a broader level, it can represent a common and standardized basis for ensuring replicability,
robustness and objectivity of the testing activity.
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Decision sensitivity measures, specifically information values, quantify the effect of input uncertainty 
on the optimality of a decision taken based on a predictive model. The information value of an input X 
is the expected value of partial perfect information associated with making a better decision when 
learning X. The information value has become popular mainly in the field of medical decision-making, 
but it is also a natural sensitivity measure in engineering, where models serve the purpose of making 
decisions about design, operation, retrofitting, upgrading or decommissioning of systems. In this 
contribution, we focus on decision sensitivity for engineering applications and discuss the modeling of 
decisions and the associated utility function (or scoring rule). We then focus on the separation of 
aleatory and epistemic uncertainty in engineering applications and investigate the implications of this 
separation on the interpretation of the sensitivity measures. We also discuss strategies for 
computationally efficient sampling-based estimation of the information values under aleatory and 
epistemic uncertainty. We illustrate the theory using two real-life applications concerned with the site 
selection for a nuclear waste deposit and the optimization of flood protection measures. 
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Interval-based sensitivity is an efficient global sensitivity analysis method that is based on interval
arithmetic [1]. It works by partitioning the input of interest into sub intervals, while the other
inputs are intact intervals. The method is non-probabilistic and can be used to calculate the
sensitivity of a function without relying on sampling, which might not capture the whole input
space. For example, methods based on sampling need the definition of a probability distribution,
which is often chosen arbitrarily. Interval sensitivity only need specification of the input space
where the sensitivity is to be calculated [2].

Global sensitivity analysis can be an effective tool against over parametrization in neural networks.
Over parametrization arises when a trained model has too many units or layers and can cause issues,
including over-fitting, poor explainability, suboptimality, excessive memory usage, and more. Being
able to determine sensitivities towards the output and knowing if there are parameters/units that
have a negligible effect and as such can be discarded with no significant loss of performance can
be consequential, leading to leaner layouts and more explainable models. Deep learning models
are often deemed to be “black boxes” because of their nearly impenetrable mathematical layout.
Interestingly however, neural network models always imply a clear, albeit intricate, mathematical
function, whose expression is the composition of as many functions as there are layers. The
model’s mathematical expression can be obtained simply knowing the network’s architecture and
the trained weights and biases.

The network’s forward sweep is a function of the network inputs t, the weights W and biases b. In
this study, the inputs of the sensitivity analysis are W and b, so we can write the forward sweep
as follows y = f(t, x), where t is the network input and x ∈ Rd is the vector of sensitivity inputs
(network parameters).

Let f : Rd → R be the forward sweep that is a function only of the network parameters, and let
f be the its interval extension. Let [y, y]i,n be the output corresponding to the n-th subinterval
when only the i-th input is partitioned and the other intervals are intact, in notation [y, y]i,n =
f([x1, x1], ..., [xi, xi]n, ..., [xd, xd]). The interval-based sensitivity index, for the i-th input, is

Si = 1−
∑N

n [xi, xi]n · [y, y]i,n
[y, y] · [xi, xi]

, (1)

where N is the number of subintervals for the i-th partition, · is the interval multiplication used
to calculate the area of the (sub) rectangles, [xi, xi]n is the n-th subinterval for the i-th partition,
such that ∪N

n [xi, xi]n = [xi, xi], and [y, y] = f([x, x]) is the overall output range. The numerator
in (1) is the sum of all subinterval areas and the denominator is the area of the box enclosing the
xy graph. The sensitivity index Si, i = 1, ..., d ranges from 0 to 1. When Si = 0, the partitioning
has no effect, the numerator is equal to the denominator and so y has no functional dependence
on xi. When Si = 1, the sub rectangular areas are zero and so y has full functional dependence
on xi. It is worth noticing that this sensitivity indices are immune to the curse of dimensionality
because the partitioning takes place in one dimension

In the example, a neural network with two layers and five ReLU units is trained to approximate
the cubic function y = t3 − 3t2 + 2t + 5. Sensitivity indices are computed for each parameter in
the trained neural network, namely weights and biases W (1) ∈ R1×5, b(1) ∈ R5, W (2) ∈ R5×1,
b(2) ∈ R. The trained network settled on the following values: W (1) = ((−1,−1, 0, 1, 1)), b(1) =
(−1, 0, 0,−2,−3), W (2) = ((−13,−5, 0, 5, 13)), and b(2) = 5. The interval sensitivity is calculated
by intervalizing the inputs with a radius of ±1 for each parameter and a partition of N = 30. The
inputs are organized in the single vector x = (W (1), b(1),W (2), b(2)) of size d = 16.
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Figure 1: Sensitivity indices across network’s input t for x = (W (1), b(1),W (2), b(2)).

The neural network is trained to approximate the above cubic function, whose graph changes sign
at t = 1. All sensitivity indices reflect this displaying peaked values around it, as shown in Fig-
ure 1. We notice that the weights describing the negative values of the cubic function, namely

W
(1)
1 , b

(1)
1 , W

(2)
1 display high sensitivities for the negative values and zero sensitivities for the posi-

tive values. Similarly, the weights describing the positive values W
(1)
4 , b

(1)
4 , W

(2)
4 , W

(1)
5 , b

(1)
5 , W

(2)
5

show the same pattern for positive and negative values respectively. It is worth noticing that these
network parameters display zero sensitivities for the region of the space that they do not describe,
as expected. Other parameters have more complex dependencies on the output. This study has
also shown that for this particular example, the network is not over parametrized so, none of
the inputs can be ignored without affecting the network’s accuracy in approximating the cubic
function. The sensitivities can also be used to see what units are active in the regions of interest,
providing a diagnostic tool to reason about the parameters role in the overall architecture.
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For decades, global sensitivity analysis (GSA) has been the method of choice for identifying the
most relevant or sensitive model parameters in nonlinear modeling [3]. This work focuses on the
Sobol indices [9], which belong to the class of the variance-related sensitivity indices. However,
despite their long successful history, the classical approach via the Sobol indices uses Monte-Carlo
(MC) sampling, typically requiring a high number of model evaluations. Such high computational
costs reduce the applicability of the classical MC-based Sobol approaches in applied scenarios,
where even individual model evaluations may require substantial computational power.

Surrogate-based techniques, such as polynomial chaos expansions (PCE), can overcome this re-
striction. Notably, the Sobol coefficients can be computed directly from expansion coefficients,
as proposed by Sudret in [10]. However, even PCE-based surrogates have some restrictions. In
particular, the classical PCE tends to suffer from Gibbs’ phenomenon, which leads to oscillations
in the surrogate caused by discontinuities in the model response.

The arbitrary multi-resolution polynomial chaos (aMR-PC) combines two ideas: the data-driven
Ansatz of the arbitrary PCE proposed in [8] and the multi-resolution/multi-element based local-
ization initially introduced in the context of uncertainty quantification by Le Mâıtre et al. in [6].
This localization inherently reduces Gibbs phenomena and can achieve higher accuracy without
increasing the maximal polynomial degree.

In this work, we extend the concept of the surrogate-based GSA to aMR-PC-based surrogates as
proposed in [5]. For demonstration, we apply the extended techniques to a problem taken from the
context of porous media. Specifically, we consider fluid flow through a coupled system consisting of
a free-flow region and a porous-medium domain. Here, the Stokes equation describes fluid flow in
the free-flow domain, and Darcy’s law holds in the porous-medium region e.g. [2, 7]. The coupling
conditions, ensure the conservation of mass across the interface, the balance of normal forces and
use the Beavers–Joseph condition [1] for tangential velocity. The latter contain the parameter
characterising pore-space morphology near the fluid-porous interface. Developing and extending
such complex models, particularly in the context of model calibration, requires powerful strategies
for assessing the relevance of model parameters, for which GSA is an established tool.

In this talk, we demonstrate the application of the aMR-PC-based GSA for the Stokes–Darcy
problem, analyzing the sensitivity of four uncertain parameters: the exact location of the interface,
the permeability, the Beavers–Joseph slip coefficient, and an geometric uncertainty in the outflow
boundary. Furthermore, we use this modeling example to compare aMR-PC and classical PCE-
based GSA.
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Da Veiga Sébastien, 40, 74, 75
Damblin Guillaume, 5, 6
De Angelis Marco, 101, 102
De Lozzo Matthias, 41, 42
De Rooij Max, 25, 26
Duhamel Clément, 32, 33
Dumon Marine, 96, 97
Dutang Christophe, 17
Dutfoy Anne, 88, 89

El Kadi Abderrezzak Kamal, 88, 89

Feas Matthias Gr, 78, 79
Fellmann Noé, 50, 51
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Pérot, Nadia, 10
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