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1 RT-UQ PhD student day, April 22, 2025

1.1 Plenary lecture

Chairman: Anthony Nouy

Jessica Hoffmann, Google DeepMind

Title: Epidemics on Graphs under Uncertainty

Abstract: Epidemic processes can model anything that spreads. As
such, they are a useful tool for studying not only human diseases, but
also network attacks, spikes in the brain, the propagation of real or
fake news, the spread of viral tweets, and other processes. This talk
focuses on epidemics spreading on an underlying graph. Currently,
most state-of-the-art research in this field assumes some form of per-
fect observation of the epidemic process. This is an unrealistic assump-
tion for many real-life applications, as the recent COVID-19 pandemic
tragically demonstrated: data is scarce, delayed, and/or imprecise for
human epidemics, and symptoms may appear in a non-deterministic
fashion - if they appear at all. We show in this work not only that the
algorithms developed previously are not robust to adding noise into
the observation, but that some theoretical results cannot be adapted
to this setting. In other words, uncertainty fundamentally changes how
we must approach epidemics on graphs.

1.2 PhD student talks

Chairwoman: Amandine Marrel

A distributional perturbation method based on the Fisher-Rao distance
for robustness analysis in uncertainty quantification, Ketema Baalu
Belay [et al.]

Addressing the Rashomon Effect through ranking aggregation, Sessa
Claudia [et al.]

Chairman: Sébastien Da Veiga

Surrogate to Poincaré inequalities on manifolds for dimension reduction
in nonlinear feature spaces, Pasco Alexandre [et al.]

Mollifiers to enhance gradient-based dimension reduction, Verdière Ro-
main [et al.]
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Variance-Informed Subspace: a Gradient-free Dimension Reduction for
Adaptive Bayesian Inference, Polette Nadege [et al.]

Chairman: Olivier Roustant

Sequential transport for density estimation and its applications, Zanger
Benjamin [et al.]

Learning signals defined on graphs with optimal transport and Gaus-
sian process regression, Carpintero Perez Raphaël [et al.]

Importance Sampling in high dimension, Beh Jason [et al.]

1.3 PhD student posters

Chairman of poster blitz: Guillaume Perrin

Louis Allain - ”Kernel-based uncertainty quantification of machine learn-
ing models: assessment and first advances”

Nils Baillie - ”Variational inference for approximate reference priors
using neural networks”

Clément Cardoen - ”Moment approach for model reduction of parameter-
dependent conservation laws in Wasserstein spaces”

Leonardo Chiani - ”gsaot: an R package for Optimal Transport-based
sensitivity analysis”

Mathis Deronzier - ”Block-Additive Gaussian Processes under Mono-
tonicity Constraints”

Baptiste Ferrere - ”Generalized Hoeffding Decomposition for Models
with Bernoulli Inputs”

Lisa Garcia - ”From the analysis of experimental shock dynamic films
to Bayesian calibration of physical models”

Lisanne Gossel - ”Scale-bridging in a complex model hierarchy for de-
velopment of an iron-fueled energy cycle”

Edgar Jaber - ”Bayesian calibration for hybrid prognostics of steam
generators clogging”

Fatima-Zahrae El-Boukkouri - “General reproducing properties in RKHS
with application to derivative and integral operators”
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Guerlain Lambert - ”Surrogate-based active learning for Sobol’ indices
estimation with dependent inputs”

Exauce Luweh Adjim Ngarti - ”Robust parameter estimation using
variational inference and generative neural networks”

Ioannis Mavrogiannis - ”Uncertainty Quantification and Sensitivity
Analysis of Energetic Particles from a Neutral Beam Injection in a
Nuclear Fusion Plasma”

Charles Miranda - ”Optimal sampling Tensor-Train approximation of
backward stochastic differential equations”

Mahamat Hamdan Nassouradine - ”Prediction of physical fields under
linear constraint”

Adrian Padilla Segarra - ”Reconstruction of fluid flow fields from data
using Gaussian process regression with physics–informed kernels”

Anthony Quintin - ”Optimal experimental designs under uncertainties
in fracture toughness test campaigns”

Nathan Ricard - ”Analysis and improvement of the convergence of
physics-informed neural networks”

Angélique Saillet - ”Sensitivity analysis & implementation of a multi-
fidelity approach for the biogeochemical model Eco3M-MED-CN in an
1DV configuration”

Marie Temple-Boyer - ”Generic framework for decision-making models
in risk analysis”

Antoine Van Biesbroeck - ”Properly constrained reference prior for a
robust design of experiments in support of seismic fragility curves esti-
mation”
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A distributional perturbation method based on the

Fisher-Rao distance for robustness analysis in uncertainty

quantification

Baalu Belay Ketema†,1,2, Nicolas Bousquet§,2, Francesco Costantino§,1,
Fabrice Gamboa§,1, Bertrand Iooss §,1,2, Roman Sueur §,2

† PhD student (presenting author). § PhD supervisors

PhD expected duration: Feb. 2023 – Feb. 2026

1 Institut de mathématiques de Toulouse, Paul Sabatier University,
{baalu-belay.ketema,francesco.costantino,fabrice.gamboa}@univ-toulouse.fr

2 EDF R&D,
{baalu-belay.ketema,roman.sueur,nicolas.bousquet,bertrand.iooss}@edf.fr

Abstract

Robustness analysis is a subdomain of uncertainty quantification that deals with the uncertainty
propagation through a computer code G (assumed costly) of its input probability distributions.
More specifically, the inputs (X1, ..., Xd) of G take uncertain values which usually correspond
to physical measurements. Therefore, the uncertainty on these inputs Xi is modeled by a
probability distribution fi that is determined through physical experiments, hence fi is itself
uncertain. The goal of a robustness analysis method is then to: (a) take into account the
uncertainty on fi, this is done by defining a distributional perturbation method; (b) assess the
impact on a quantity of interest (QoI) of the output Y = G(X) of a perturbation on the inputs
through robustness indices.

In this talk, we will present these two aspects of a specific robustness analysis method initially
proposed in [1].

In the first part of this presentation, we will focus on the distributional perturbation method
that is based on the Fisher-Rao distance on parametric families of probability distributions
P = {gθ}θ∈Θ. This particular distance, on P, derived from the Fisher information metric, has
a geometric origin: it is the length of the shortest path connecting two points in P. The Fisher-
Rao distance presents many interesting properties for the purpose of robustness analysis. One
of these properties is the universality of a (small) distance value δ > 0 in two different families:
if P = {gθ}θ∈Θ and Q = {hξ}ξ∈Ξ are two parametric families of probability distributions with
their respective Fisher-Rao distance dP and dQ, then if dP(gθ, gθ′) = dQ(hξ, hξ′) = δ > 0 we can
conclude that gθ and gθ′ are “as far apart as” hξ and hξ′ . This is a consequence of the Cramér-
Rao lower bound and holds even though these distributions belong to two different families each
possessing its own Fisher-Rao distance.

In the second part of this presentation, we will explain how the impact of a distributional
perturbation on the inputs is assessed through robustness indices. These indices are denoted
Siδ for each input Xi and a perturbation level δ. They quantify the relative variation of the QoI
of the output before and after perturbation of the input distributions

Siδ =
Q(Y iδ) − Q(Y )

Q(Y )
,
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where Q(Y ) is a QoI of Y , usually a quantile, and Y and Y iδ are respectively the initial and
perturbed output of G. Since these statistical quantities are not explicitly known, a statistical
estimation method is necessary which takes into account the computation cost of G. The
estimation method that we use is importance sampling. A central limit theorem is available
for the estimators of both Q(Y ) and Q(Y iδ) but the asymptotic variance depends respectively
on the density function of Y and Y iδ which is hard to estimate [1, 2]. For this reason, we
decided to construct non-asymptotic confidence intervals for the output QoI based on well known
concentration inequalities [3]. This will be illustrated on different analytical and industrial cases.

Short biography (PhD student)

I did my bachelor’s and master’s degree in mathematics at Paul Sabatier University. I then
pursued a PhD career in mathematics at EDF R&D in collaboration with the Mathematics
Institute of Toulouse (IMT). The main goal in my thesis is to perform robustness analysis of
computer codes for uncertainty quantification using information geometry. I am currently a
second year PhD student and I was funded by the Labex CIMI (Toulouse) for the first few
months of my PhD and by EDF for the remaining duration.

References

[1] C. Gauchy, J. Stenger, R. Sueur, and B. Iooss. An information geometry approach to
robustness analysis for the uncertainty quantification of computer codes. Technometrics,
64(1):80–91, 2022.

[2] P. W. Glynn. Importance sampling for Monte Carlo estimation of quantiles. In Mathemat-
ical Methods in Stochastic Simulation and Experimental Design: Proceedings of the 2nd St.
Petersburg Workshop on Simulation, pages 180–185. Citeseer, 1996.

[3] B. B. Ketema, N. Bousquet, F. Costantino, F. Gamboa, B. Iooss, and R. Sueur. Non-
asymptotic confidence intervals for importance sampling estimators of quantiles. In 55ème
Journées de statistique de la SFdS, Bordeaux, France, May 2024.
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Addressing the Rashomon Effect through ranking

aggregation

C. Sessa†,1, E. Borgonovo2, A. Cillo§,1, G.P. Crespi§,1, X. Lu3

† PhD student (presenting author). § PhD supervisor

PhD expected duration: Dec. 2022 – Dec. 2025

1 LIUC Business University, Castellanza, Italy
{csessa, acillo, pcrespi}@liuc.it

2 Department of Decision Sciences, Bocconi University, Milan, Italy
emanuele.borgonovo@unibocconi.it

3 SKEMA Business School, Université Côte d’Azur, Paris, France
xuefei.lu@skema.edu

Abstract

When dealing with prediction problems, analysts rely on variable importance measures and
global sensitivity measures to understand the predictive power of variables and uncover the
relationships in the data [10]. When the data generating process (DGP) is unknown, analysts
typically train machine learning models to use as surrogates, and derive explanations for the
patterns in the data computing the variable importance of the best performing model. The
validity of this approach is threatened by the Rashomon Effect [2], whereby multiple models
achieve similar predictive accuracy but offer different and sometimes conflicting explanations
for the underlying patterns. Indeed, the Rashomon Set [5] – the collection of all almost-optimal
prediction models – can be seen both as a challenge and an opportunity for analysts: while this
adds uncertainty to inference, it also allows for broader exploration of potential explanations.

A number of studies have succeeded in framing a procedure to compute or approximate the
Rashomon Set for some specific model classes [11, 12, 4, 9]. Few attempts, however, have been
made to explain the relationships in the data by exploiting the whole Rashomon Set [5, 4]. In
this work, we propose a novel methodological framework that leverages all the models in the
Rashomon Set to produce more reliable and consistent insights into variable importance. Our
idea is to view the Rashomon Set for a dataset as a collection of agents, each expressing its
own possibly different preference for the features, much like how different experts may offer
varying interpretations of the same data. The strength of this preference corresponds to the
importance of each variable for the prediction, quantified through an importance measure. By
transforming the importance vectors for all the models into rankings and then aggregating them,
our method allows analysts to generate a consensus ranking which reflects the preferences of
the entire Rashomon Set, offering a comprehensive view on the mechanisms in the data. We
draw upon the established literature on ranking aggregation techniques [3, 6, 8] to combine the
individual importance rankings into a unified ranking that is robust to model variability.

The proposed framework complements existing variable importance measures and provides ana-
lysts with a powerful tool to handle model multiplicity in practical applications. We validate our
methodology using both simulated data from known DGPs and real-world datasets, to demon-
strate how the framework reconciles conflicting signals from multiple models and produces an
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importance ranking of variables that is more aligned with the true DGP. We test different ag-
gregation techniques to show how the choice of the technique impacts the consensus ranking.
Furthermore, we provide theoretical results on the structure of the Rashomon Set for the specific
class of linear regression models. In particular, we clarify the connection between the coefficients
of linear models in the Rashomon Set and the permutation importance measure [1], a widely
used measure in machine learning, exploring its relation to total indices [7].

Short biography (PhD student)

Claudia Sessa is a PhD Candidate at LIUC Business University in Castellanza, Italy. Previously,
she obtained a MSc in Data Science and Business Analytics (cum laude) and a BSc in Economics,
Management and Computer Science, both from Bocconi University in Milan. Her research lies
at the intersection of operations research and machine learning.
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Surrogate to Poincaré inequalities on manifolds for

dimension reduction in nonlinear feature spaces

A. PASCO†,1, A. NOUY§,1

† PhD student (presenting author). § PhD supervisor

PhD expected duration: Dec. 2022 – Nov. 2025

1 Laboratoire de Mathématiques Jean Leray, Ecole Centrale de Nantes, Nantes Université
{alexandre.pasco,anthony.nouy}@ec-nantes.fr

Abstract

This work focuses on approximating a differentiable function u : Rd → R with d ≫ 1 by a
composition of functions f ◦ g where g : Rd → Rm and f : Rm → R. The approximation error is
assessed in the L2

µ-norm where µ is some probability measure on Rd. The approach considered
is two-staged. Firstly the feature map g is selected among some prescribed functional class by
minimizing some function J involved in the upper bound of the approximation error

min
f :Rm→R

Eµ(|u − f ◦ g|2) ≤ CµJ (g), (1)

which is based on Poincaré inequalities and requires evaluations of ∇u.

Secondly the function f is built using classical regression methods. Until recently, bounds of
the form (1) were only available for linear feature maps g. This framework has been extensively
studied under the name Active Subspace, see for example [2, 4], and the solution is given
by the eigenvectors of the matrix E(∇u∇uT ) ∈ Rd. This approach is easy to implement,
computationally efficient, has robust theoretical guarantees for some classical probability laws
µ, and showed good performances in various numerical applications. However, there are many
functions u for which such an approximation with m < d is known to be not efficient.

Therefore, recent works consider non-linear feature maps in order to produce better dimension
reduction. More especially, we will focus on the work from [1, 3] in which authors leverage
Poincaré inequalities on smooth manifolds to obtain a bound of the form (1) for non-linear g.
Although there are less theoretical guarantees, their numerical experiments showed improved
performances compared with linear featuring. However, minimizing J is now much harder than
finding eigenvectors of some matrix, and can only be done using iterative descent methods.

In this work we consider feature maps as in [1], of the form g(x) = GTΦ(x) with G ∈ RK×m

and where Φ : Rd → RK , K ≥ d, is fixed. We study a new quantity, denoted L(g), which
can be expressed as the minimal singular value of some positive semi-definite matrix. We show
that for a compact set of polynomial feature maps with m = 1, for some class of probability
distributions, any minimizer g∗ of L satisfies the sub-optimality result

J (g∗) ≲ min
g

J (g)β ,

where 0 < β ≤ 1 is some constant which depends on the degree. We also extend this approach
to the case m > 1 as well as for simultaneously learning a parametrized family of functions
uy ∈ L2

µ by y ∈ Y, although the theoretical results are weaker. Finally, we provide numerical
examples to illustrate the performances of g∗, both as the feature map used in the regression
step, or as the initializer for some iterative descent algorithm for minimizing J .
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Short biography (PhD student)

I graduated from Ecole Centrale de Nantes in 2022 as generalist engineer. It included 2 years
focused on applied mathematics, from machine learning to numerical analysis. I continued at
ECN by starting my PhD thesis on December 2022, funded by ANR COFNET, focusing on
compositional function networks for nonlinear model reduction, for forward and inverse prob-
lems.
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[2] Paul G. Constantine, Eric Dow, and Qiqi Wang. Active Subspace Methods in Theory and
Practice: Applications to Kriging Surfaces. SIAM J. Sci. Comput., 36(4):A1500–A1524,
January 2014.

[3] Romain Verdière, Clémentine Prieur, and Olivier Zahm. Diffeomorphism-based feature learn-
ing using Poincaré inequalities on augmented input space, December 2023.

[4] Olivier Zahm, Paul G. Constantine, Clémentine Prieur, and Youssef M. Marzouk. Gradient-
Based Dimension Reduction of Multivariate Vector-Valued Functions. SIAM J. Sci. Comput.,
42(1):A534–A558, January 2020.
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Mollifiers to enhance gradient-based dimension reduction

R. Verdière†,1, C. Prieur§,1 O. Zahm§,1,

† PhD student (presenting author). § PhD supervisor
PhD expected duration: Sept. 2022 – Aug. 2025

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK

{romain.verdiere,olivier.zahm}@inria.fr ; clementine.prieur@univ-grenoble-alpes.fr

Abstract

Modern computational models for scientific and engineering applications typically involve a
large number of input parameters and are expensive-to-evaluate both in time and resources.
Replacing the model with an accurate and fast-to-evaluate surrogate (or approximation) offers
a viable workaround in many applications. Approximating such high-dimensional functions with
classical approximation tools such as polynomials, wavelets or neural networks is, however, a
difficult task. This is even aggravated in the small sample regime where one only has access to
a little number of model evaluations. One way to address this challenge is to reduce the input
dimension beforehand. This consists in approximating the model x 7→ u(x) as the composition
of two functions: a feature map x 7→ z = g(x) which extracts the relevant features of the
input variables, and a profile function z 7→ f(z) which regresses the model output on the
features. The feature map can be built by minimizing an upper bound of the reconstruction
error minf E[(u(X) − f ◦ g(X))2] obtained with Poincaré-type inequalities. When the feature
map is linear this strategy reduces to Active Subspace [4, 2]. The case of nonlinear feature
maps has been studied in [1] for polynomial feature maps and in [3, 5] for diffeomorphism-based
feature maps. The bound derived from Poincaré inequality is proportional to the L2-norm of
model gradients, therefore, this strategy works well for slowly varing functions for which the
bound is tight. For oscillatory model with large gradient norms, however, the bound reveals too
loose to build a meaningfull feature map and the method fails.

In this talk we demonstrate that working with a mollified version of the model (u⋆ρσ) is a good
strategy to circumvent this issue as it allows to obtain sharper Poincaré error bounds and to
reduce the dimension efficiently using gradient-based techniques. Here ρσ is the gaussian kernel
with 0 mean and σ2Id covariance, ⋆ is the convolution operator and we call σ the mollifying
parameter. We demonstrate that the reconstruction error when using a mollified version of
the model can be bounded by the sum of two terms: one that vanishes when the mollifying
parameter goes to zero and one that is proportional to the Poincaré error bound of the mollified
model. This bound shows the trade-off between mollification and dimension reduction: for
strongly mollified models the first term is large and the second one quite small and the other way
around when the model is less mollified. Based on this result, we propose an iterative algorithm
for dimension reduction. More precisely, we introduce a sequence σ1 > σ2 > . . . > σp ≥ 0 of
decreasing mollifying parameters. Then at the first iteration we approximate a strongly mollified
version of the model u∗

1 = u ⋆ ρσ1 with a feature map g1 and a profile function f1. At the next
interation the algorithm approximates a slightly less mollified version of the residual model
u∗

2 = (u − f1 ◦ g1) ⋆ ρσ2
with a feature map g2 and a profile function f2. This proccess iterates

p times and at the end the original model u is approximated by
P

1≤i≤p fi ◦ gi.

Let us illustrate on some example the impact of the mollification step on the accuracy of Poincaré
error bound. We consider the analytical toy model u(x) =

Pd
i=1 aisin(ωixi), where ai,ωi, xi are

1



RT-UQ 2025 April 22, 2025, Grenoble, France

respectivelly the ith components of vectors a ∈ Rd,ω ∈ Rd, x ∈ Rd. We aim at approximating u
by f ◦ g with g a projector onto {e1, ..., ed} the canonical basis of Rd. Here g is a linear feature
map and g = U⊤ P

i∈τ eie
⊤
i where τ ⊂ {1, . . . , d}, #τ = m and U = [ei]i∈τ ∈ Rd×m. In this

framework, and for X ∼ N (0, Id), we compare the minimal reconstruction error for uσ = u ∗ ρσ
with the one obtained by minimizing Poincaré error bound. We perform the comparison for
ai = 1, i = 1, ..., d and for different values of σ. In this situation the reconstruction error is equal
to 1

2

P
i∈−τ e−ω2

i σ
2

(1 − e−2ω2
i ) and the Poincaré error bound is equal to 1

2

P
i∈−τ ω

2
i e−ω2

i σ
2

(1 +

e−2ω2
i ), where −τ is the complementary set of τ in {1, . . . , d}. We can compare the 2 functions

eerr(ω) = 1
2e−ω2σ2

(1 − e−2ω2

) and ebound(ω) = 1
2ω

2e−ω2σ2

(1 + e−2ω2

) to understand how the
error and the bound behave for different values of the mollifying parameter σ. Figure 1 clearly
shows that the reconstruction error and the error bound become closer together as the value of
σ grows.

(a) σ = 0 (b) σ = 0.5 (c) σ = 1

Figure 1: Plots of eerr and ebound according to ω for different values of σ

Short biography

I am a former student of ENSTA Paris where I studied mathematics and computer science. At
the end of my engineering studies, to deepen my knowledge in general mathematics, I prepared
for and passed mathematical aggregation. Finally, after a short experience as a teacher, I moved
to Grenoble to work as PhD student with Clémentine Prieur and Olivier Zahm on nonlinear
dimension reduction for function approximation. This thesis is funded by the French Research
Agency (ANR).
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Variance-Informed Subspace: a Gradient-free Dimension

Reduction for Adaptive Bayesian Inference

N. Polette†,1,2, P. Sochala§,1, O. Le Mâıtre§,3, A. Gesret§,2

† PhD student (presenting author). § PhD supervisor

PhD expected duration: Nov. 2022 – Oct. 2025

1 CEA, DAM, DIF, F-91297 Arpajon, France
{pierre.sochala}@cea.fr

2 Mines Paris PSL, Geosciences center, Fontainebleau, France
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{olivier.le-maitre}@polytechnique.edu

Abstract

Inverse problems are encountered in many applications whenever one search for information
about a physical system based on measurements [7]. In this work, we are interested in estimating
a physical field thanks to a set of indirect observations d. The Bayesian inference is an attractive
approach for adressing such problems, as it provides a full estimation of the unknown parameters
distributions. In that framework, the aim is to estimate the posterior probability of the field
parameters x based on the observations

πpost(x|d) ∝ L(d|x)πprior(x), (1)

where L is the likelihood of the observations given a field and πprior the prior probability of the
field. The posterior distribution is then sampled with Markov Chain Monte–Carlo (MCMC) [4].
In order to accelerate the MCMC sampling, the forward model predictions are replaced with
surrogate models based on polynomial chaos (PC) expansions [8, 5]. In order to reduce the
input dimension of the surrogate model, a parsimonious representation of the field is introduced
by means of the Karhunen-Loève (KL) decomposition, on the assumption that the field of
interest is a particular realization of a Gaussian random field. Despite this parametrization,
several hundred inputs could be required to represent accurately a two-dimensional field. This is
expensive with regard to both the forward model surrogate training and the MCMC convergence.

Linear dimension reduction techniques have been developed to decrease the number of parame-
ters to infer. These techniques assume that most of the information provided by the likelihood
can be captured by a low-dimensional linear subspace. The input parameter space is decomposed
into two subsets

x = Axa + A⊥xi, (2)

where xa is informed by the likelihood, while xi is constrained by the prior. The posterior
distribution (1) rewrites

πpost(x|d) ∝ L(d|xa)πprior(xa)πprior(xi|xa), (3)

such that only xa is sampled during the MCMC procedure. Several methods to define the linear
transformation operator A have been developed. Cui et al. [3] build a Likelihood-Informed Sub-
space (LIS) which relies on the Hessian of the log-likelihood. The optimality of such construction
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has been proven in [6] for the linear case. Constantine et al. [2] adapt the Active Subspace (AS)
approach [1] to the Bayesian framework by using the misfit gradient. In both methods, the
curvature of the log-posterior density is more constrained by the log-likelihood than by the prior
along the subspace directions.

This study presents a new construction for the linear transformation operator A. The general
idea is inspired from the work of [6] which states that, in the linear case, approximating the
posterior covariance is equivalent to approximating its inverse. Instead of relying on the Hessian
of the log-likelihood, the approximation of the inverse posterior covariance involves the ratio of
the posterior and the prior variances.

For nonlinear inverse problems, we propose to generalize this variance ratio. The low-dimensional
subspace is defined as the directions in which the posterior variance is drastically reduced in
comparison to the prior variance. This method is gradient-free. We show on state-of-the-art
examples that it is sufficient for unimodal posteriors, while some adjustments are required in the
case of multimodal results. An application on a two-dimensional field inference case illustrates
the interest of the method for high-dimensional problems.
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Abstract

Transport-based methods are receiving growing interest because of their ability to sample easily
from the approximated density. These methods aim at building a deterministic diffeomorphism
T , also called a transport map, which pushes forward an arbitrary reference probability density
ρref to a given target probability density π to be approximated. Typically, the transport map
T is parameterized e.g. by invertible neural networks and fitted using variational methods of
the form

min
T ∈M

D(π||T♯ ρref) (1)

with a statistical divergence D(· ||·), typically the (reversed) KL-divergence. An emerging strat-
egy for this problem is to first estimate π by eπ and then to compute a map T which exactly
pushes forward ρref to eπ, see [2, 1]. Among the infinitely many maps T which satisfy T♯ ρref = eπ,
the Knothe–Rosenblatt (KR) map is rather simple to evaluate since it requires only computing
the cumulative distribution functions (CDFs) of the conditional marginals of eπ. In general, prob-
lem (1) is difficult to solve when π is multimodal or when it concentrates on a low-dimensional
manifold. The solution proposed in [1] consists in introducing an arbitrary sequence of bridging
densities

π(1),π(2), . . . ,π(L) = π, (2)

with increasing complexity. The sequential strategy consists in building L transport maps
Q1, . . . , QL one after the other by solving

min
Qℓ∈M

D(π(ℓ)||(Tℓ−1 ◦ Qℓ)♯ ρref), where Tℓ−1 = Q1 ◦ . . . ◦ Qℓ−1. (3)

ρref
(T1)♯ ρref (T2)♯ ρref (T3)♯ ρref πQ1 Q2 Q3

Figure 1: Visualization of the approximation of a bimodal density π (right) using L = 3 inter-
mediate tempered densities estimated using SoS (4) and a Gaussian reference density ρref .

1



RT-UQ 2025 April 22, 2025, Grenoble, France

For suitable statistical distances, so that D(π||T♯ρ) = D(T ♯π||ρ), these problems are equivalent to
estimating the pullback density (Tℓ−1)

♯π(ℓ) with an intermediate approximation ρ(ℓ) = (Qℓ)♯ ρref .

In our work, we contribute to this methodology as follows.

First, we employ Sum-of-Squares (SoS) densities to approximate the intermediate densities ρ(ℓ)

using α-divergences Dα(·||·). We sequentially solve the variational density approximation prob-
lem as in Equation (3) with Dα as the statistical divergence and where

ρ(ℓ)(x) =
�
Φ(x)⊤AℓΦ(x)

�
ρref(x), (4)

for some arbitrary orthonormal basis function Φ in L2(ρref). Here, the positivity of the matrix
Aℓ ⪰ 0 ensures the density ρ(ℓ) to be positive. Since the α-divergence is defined for general
unnormalized densities, it is not necessary to know the normalizing constant of π beforehand.
α-divergences Dα(·||·) with parameter α ∈ R include the Hellinger distance and KL-divergence,
which have been used in previous works. The proposed SoS densities permit to efficiently
normalize the estimated unnormalized density and to compute the KR map Qℓ such that
(Qℓ)♯ ρref = ρ(ℓ). This combined use of α-divergence for performing SoS density estimation
results in a convex optimization problems which can be efficiently solved using off-the-shelf
toolboxes.

Second, we extend the methodology to the scenario where only samples X(1), . . . , X(N) from π
are available, as opposed to point-evaluations of the target density π. In this scenario, we propose
to use diffusion-based bridging densities π(ℓ)(x) where the distribution follows a time–inversed
diffusion process such as the Ornstein-Uhlenbeck process with time parameters tℓ−1 ≤ tℓ and
tL = 0. This idea is at the root of diffusion models.

Third, we present a novel convergence analysis using the geometric properties of α-divergences.
This analysis unifies and extends previous analyses proposed in [3, 1] and, more interestingly,
it guides the choice of bridging densities. In particular, we show that a smart choice of βℓ for
tempered densities or of tℓ for diffusion-based densities yield a convergence rate of O(1/L2) with
respect to the number of layer L.

Last, we give an outlook for using sequential measure transport to solve optimal transport
problems, where we mitigate the difficulty of estimating the optimal coupling by a sequence of
entropic regularized problems.

We demonstrate the capability of our proposed method in unsupervised learning, Bayesian
inverse, and optimal transport problems in moderate dimensions.
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Abstract

In computational physics, machine learning has now emerged as a powerful complementary tool
to explore efficiently candidate designs in engineering studies. In this context, we would like to
be able to easily predict fields defined on meshes corresponding to new geometries without the
need for costly simulations. While some methods like Graph Neural Networks [4] are intrinsically
designed to predict signals defined on graphs or point clouds, a natural question is the extension
of general scalar output regression models to such complex outputs. Changes between input
geometries in terms of both size and adjacency structure in particular make this transition non-
trivial. Another key challenge is the obtention of predictive uncertainties, which is crucial to
certify the quality of results, to assist sequential design of experiments or to plug the models
into Bayesian optimization workflows.

In this work, we propose an innovative strategy for Gaussian process regression where inputs
are large and sparse graphs with continuous node attributes and outputs are signals defined on
the nodes of the associated inputs. The methodology relies on the combination of regularized
optimal transport [3], dimension reduction techniques [2], and the use of Gaussian processes
[5] indexed by graphs. It extends previous work on Gaussian processes with Sliced Wasserstein
Weisfeiler Lehman graph kernels [1] previously limited to scalar outputs. In addition to enabling
signal prediction, the main point of our proposal is to come with confidence intervals on node
values.

We illustrate the efficiency of the method with regression tasks involving large graphs from
mesh-based simulations in computational fluid dynamics and mechanics 1. Train datasets are
made up of a few hundred graphs with their respective 2D/3D coordinates, where adjacency
matrices vary between several inputs, and output fields represent physical quantities of interest
on the nodes such as the pressure or the temperature. In Figure 1, we show predictions and
associated uncertainties for two test samples of a problem in computational mechanics.

1Datasets: https://plaid-lib.readthedocs.io/en/latest/source/data_challenges.html
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Figure 1: Predictions for two test meshes from the Tensile2d dataset (top and bottom lines). From
left to right: the input mesh, the predicted field and the posterior standard deviation of the Gaussian
process regression.
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Abstract

Rare event analysis often involves the estimation of the rare event probability p = Pf (X ∈ A),
where f = N(0, I) is the d-dimensional standard Gaussian distribution, which is a fairly general
setting owing to isoprobabilistic transformations [8]. Whereas Adaptive Splitting [3] concerns
the modification of the trajectories of the samples towards the region of interest A, Importance
Sampling (IS) considers an auxiliary distribution g which allocates more probability mass in A
than f . Given ng samples (Yi)i=1...n generated according to g to whom 1 (· ∈ A) f is absolutely
continuous, the IS estimator is written as

p̂g =
1

ng

ngX

i=1

f(Yi)

g(Yi)
1 (Yi ∈ A)

In low dimension, IS estimators are often employed due to the desired variance reduction prop-
erty compared to Monte Carlo estimator. However, in high dimension, IS estimators suffer
from convergence issues and become extremely sensitive to the choice of auxiliary distribution.
This motivates a theoretical study on the convergence of IS estimators in the high-dimensional
setting, d → +∞.

As d → +∞, two settings can arise: either the probability to be estimated is bounded away
from zero: infd p > 0, or the probability tends to zero with the dimension: p → 0. The first
setting infd p > 0, considered by [1, 4], occurs when p involves a stochastic process which is
approximated by a finite sum of random variables by principal component analysis. Then, the
probability to estimate becomes pd, which tends to p > 0 when d → ∞. In this setting, We will
discuss our work on the convergence of the Cross-Entropy scheme [2] as well as its projection
and improved variants [5, 10, 9].

The second setting, p → 0 as d → ∞, considered by [7, 6], occurs in specific settings such as in
Highly Reliable Markovian Systems or in static network reliability estimation. This setting is
more complex since the properties of IS estimators are reliant on the rate of convergence of p
to 0. To tackle this setting, we first establish necessary and sufficient conditions for general IS
estimators to be consistent, and conditions to verify a Central Limit Theorem towards a normal
distribution. We then translate these conditions into the necessary rate of growth of the sample
size ng for various auxiliary distributions in a classical large deviation setting, A = {x ∈ Rd :Pd

j=1 x(j) ≥ dγ} with γ > 1/2. It will be observed that the ‘optimal’ Gaussian density for IS
largely depends on the error metric considered.
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Figure 1: The histogram (ng = 1000) and the evolution of usual error metrics with ng of p̂g for
two choices of auxiliary density: which is better?
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