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Why so many published sensitivity analyses are false? 

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., ... & Wu, Q. (2019). 
Why so many published sensitivity analyses are false: A systematic review of sensitivity 
analysis practices. Environ. modelling & software, 114, 29-39.

• Model 𝑦 = 𝑓(𝑥), 𝑥 = 𝑥1, … , 𝑥𝑛 , 𝑓(𝑥) ∈ 𝐶 𝐻𝑛

• Local sensitivity (OAT): partial derivative 𝜕𝑦/𝜕𝑥𝑖  at a nominal point 𝑥*

• If 𝑓 is nonlinear, 𝜕𝑦/𝜕𝑥𝑖 varies across 𝑥𝑖.

• With input interactions, 𝜕𝑦/𝜕𝑥𝑖 depends on other factors.

• Partial derivatives are only reliable for linear models.
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1. Local Derivatives & Morris method 

2. Derivative based Global Sensitivity Measures (DGSM)
⋅  Upper bounds & Lower bounds
⋅  For groups of variables
⋅  Based on Crossed Derivatives
⋅  For arbitrary input distributions

3. Computing of DGSM 

4. Effective dimensions

5. Active Subspaces

6. Derivative-based Shapley value

7. Other applications

Outline
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The Bridge between local and global measures
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Pros: Variance-based sensitivity (Sobol’) indices offer a 
comprehensive approach to the model analysis. 

Cons: Generally require a large number of function evaluations 
to achieve convergence -> become impractical for complex 
high dimensional problems. 

Practical Alternative: Screening methods

Pros and Cons of Variance-based 
Sensitivity Indices
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Campolongo F, Cariboni J, Saltelli A. Environ Modell Software, 2007;22)

Morris screening method

Model 𝑓(𝑥) ∈ 𝐶 𝐻𝑛
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Derivative based Global Sensitivity Measures : DGSM
𝟏. Morris measure in the limit Δ → 0 

𝐸𝑖 𝑥1
0, … , 𝑥𝑛

0 = lim
Δ→0

𝐸𝐸𝑖 𝑥1
0, … 𝑥𝑛

0 =
𝜕𝑓

𝜕𝑥𝑖

2. Bridging the Gap: From Discrete sum to an integral:

𝐿1-based global sensitivity measures (DGSM) [1]:

𝑀𝑖
∗ = 𝐻𝑛׬ 𝐸𝑖 𝑑𝑥, ᪄Σ𝑖

∗ = 𝐻𝑛׬ 𝐸𝑖 − ᪄𝑀𝑖
∗ 2 d𝑥

1/2

𝐿2-based DGSM:    𝑣𝑖 = 𝐻𝑛׬

𝜕𝑓

𝜕𝑥𝑖

2
𝑑𝑥

Alternative global sensitivity measure (𝐺𝑖= 𝑣𝑖) [2]:   ᪄𝐺𝑠 =
∑𝑖=1

𝑠 𝐺𝑖

∑𝑖=1
𝑛 𝐺𝑖

[1] Kucherenko S., Rodriguez-Fernandez M., Pantelides C., Shah N.. (2009) Monte Carlo evaluation of 

derivative based global sensitivity measures. Reliab Eng Syst Saf, 94(7). 

[2] Sobol’ I, Gresham A. On an altenative global sensitivity estimators. In: Proceedings of SAMO, 

Belgirate, 1995. 
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Questions: 

Are DGSM less CPU time demanding than variance based?

Do they have a link with Sobol’ sensitivity indices ?

How can they be used ? 

Pros and Cons of DGSM
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Derivative based global sensitivity
 measures. Upper and Lower bounds

Theorem 1.  Assume that 𝑐 ≤
𝜕𝑓

𝜕𝑥𝑖
≤ 𝐶.  D − total variance. Then

  
𝑐2

12𝐷
≤ 𝑆𝑖

𝑡𝑜𝑡 ≤
𝐶2

12𝐷

Proof:

𝐷𝑖
𝑡𝑜𝑡 =

1

2
න

𝐻𝑛

න

0

1

𝑓 𝑥 − 𝑓 𝑥
∘ 2

𝑑𝑥𝑑𝑥𝑖
′

𝑓 𝑥 − 𝑓 𝑥
∘

=
𝜕𝑓 ො𝑥

𝜕𝑥𝑖
𝑥𝑖 − 𝑥𝑖

′

where is ො𝑥 a point between 𝑥 and 𝑥
∘
 

Sobol’ I.M., Kucherenko S. (2009) Derivative based Global Sensitivity Measures and their link 
with global sensitivity indices, Math. and Comp. in Simul., 79(10) 3009-3017
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Derivative based global sensitivity
 measures. Upper bounds

𝑓(𝑥) ∈ 𝐶 𝐻𝑛 ,
𝜕𝑓(𝑥)

𝜕𝑥𝑖
∈ 𝐿2 𝐻𝑛 , ∀𝑖 = 1, … , 𝑛

𝑣𝑖 = න
𝐻𝑛

𝜕𝑓(𝑥)

𝜕𝑥𝑖

2

𝑑𝑥

𝑤𝑖
(𝑚)

= න
𝐻𝑛

𝑥𝑖
𝑚 𝜕𝑓(𝑥)

𝜕𝑥𝑖
𝑑𝑥, 𝑚 > 0

𝜍𝑖 =
1

2
න

𝐻𝑛
𝑥𝑖 1 − 𝑥𝑖

𝜕𝑓(𝑥)

𝜕𝑥𝑖

2

𝑑𝑥

 Consider the full set of derivative based measures:

Υ𝑖 = 𝑣𝑖 , 𝑤𝑖
(𝑚)

, 𝜍𝑖 , 𝑚 > 0
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Derivative based global sensitivity
 measures     . Proof components

𝑓 𝑥 = 𝑓0 + ෍

𝑖

𝑓𝑖 𝑥𝑖 + ෍

𝑖<𝑗

𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗 +. . . +𝑓1,2,...,𝑛 𝑥1, 𝑥2, . . . , 𝑥𝑛

denote the sum of all terms in ANOVA that depend on 𝑥𝑖:

𝑢𝑖(𝑥) = 𝑓𝑖(𝑥𝑖) + ෍

𝑗=1,𝑗≠𝑖

𝑛

𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + ⋯ + 𝑓12⋯𝑑(𝑥1, ⋯ , 𝑥𝑛)

Obviously න
𝐻𝑛

𝑢𝑖(𝑥)𝑑𝑥 = 0.

Denote 𝑧 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) the vector of all variables but 𝑥𝑖 , 

then 𝑥 ≡ 𝑥𝑖 , 𝑧  and 𝑓 𝑥 ≡ 𝑓 𝑥𝑖 , 𝑧 .

𝑓 𝑥 = 𝑢𝑖 𝑥𝑖 , 𝑧 + 𝑉 𝑧 ,  
𝜕𝑓

𝜕𝑥𝑖
=

𝜕𝑢𝑖

𝜕𝑥𝑖

iv
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Derivative based global sensitivity
 measure     . Upper bound UB1

iv

Theorem UB1. 𝑆𝑖
𝑡𝑜𝑡 ≤

𝑣𝑖

𝜋2𝐷

Proof:

𝐷𝑖
𝑡𝑜𝑡 = න

𝐻𝑛
𝑢𝑖

2(𝑥)𝑑𝑥 ; 
𝜕𝑓

𝜕𝑥𝑖
=

𝜕𝑢𝑖

𝜕𝑥𝑖

Using    0׬

1
𝑢𝑖

2(𝑥)𝑑𝑥𝑖 ≤
1

𝜋2 0׬

1 𝜕𝑢𝑖

𝜕𝑥𝑖

2
𝑑𝑥𝑖 →

𝑈𝐵1 =
𝑣𝑖

𝜋2𝐷

Small 𝑣𝑖 corresponds to small 𝑆𝑖
𝑡𝑜𝑡
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Derivative based global sensitivity
 measure      . Upper bound UB2i

Theorem UB2. 𝑆𝑖
𝑡𝑜𝑡 ≤

𝜍𝑖

𝐷

Proof:

𝜍𝑖 =
1

2
න

𝐻𝑛
𝑥𝑖 1 − 𝑥𝑖

𝜕𝑓(𝑥)

𝜕𝑥𝑖

2

𝑑𝑥

=
1

2
න

0

1

𝑥𝑖 1 − 𝑥𝑖 𝑢𝑖
′ 2𝑑𝑥

Using     0׬

1
𝑢𝑖

2𝑑𝑥 ≤
1

2
0׬

1
𝑥(1 − 𝑥)

𝜕𝑢𝑖

𝜕𝑥𝑖

2
𝑑𝑥

𝑈𝐵2 =
𝜍𝑖

𝐷

S. Kucherenko, S. Song (2014) DGSM and their link with Sobol’ sensitivity indices. Monte Carlo 
and Quasi-Monte Carlo Methods 2014, Springer Proc. in Mathematics & Statistics 
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DGSM. Lower bound LB1 

Theorem LB1.

𝐻𝑛׬ [𝑓(1,𝑧)−𝑓(0,𝑧)][𝑓(1,𝑧)+𝑓(0,𝑧)−2𝑓(𝑥)]𝑑𝑥
2

4𝑣𝑖𝐷
< 𝑆𝑖

𝑡𝑜𝑡

Proof:

Using Cauchy−Schwarz inequality

න
𝐻𝑛

𝑢𝑖(𝑥)
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑖
𝑑𝑥

2

≤ න
𝐻𝑛

𝑢𝑖
2(𝑥)𝑑𝑥 ⋅ න

𝐻𝑛

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑖

2

𝑑𝑥 →

 

LB1 =
𝐻𝑑׬ [𝑓(1, 𝑧) − 𝑓(0, 𝑧)][𝑓(1, 𝑧) + 𝑓(0, 𝑧) − 2𝑓(𝑥)]𝑑𝑥

2

4𝑣𝑖𝐷
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Derivative based global sensitivity
 measures. Lower bound LB2 

Theorem LB2.

𝛾(𝑚) =
(2𝑚+1) 𝐻𝑛׬ (𝑓(1,z)−𝑓(𝑥))𝑑x−𝑤𝑖

(𝑚+1) 2

(𝑚+1)2𝐷
< 𝑆𝑖

𝑡𝑜𝑡

Proof:
𝑤𝑖

(𝑚)
= න

𝐻𝑛
𝑥𝑖

𝑚 𝜕𝑓(x)

𝜕𝑥𝑖
𝑑x = න

𝐻𝑛
𝑥𝑖

𝑚 𝜕𝑢𝑖(x)

𝜕𝑥𝑖
𝑑x, 𝑚 > 0

Using න
𝐻𝑛

𝑥𝑖
𝑚𝑢𝑖(𝑥)𝑑𝑥

2

≤ න
𝐻𝑛

𝑥𝑖
2𝑚𝑑𝑥 ⋅ න

𝐻𝑛
𝑢𝑖

2(𝑥)𝑑𝑥 →

At 𝑚∗ = arg max(𝛾(𝑚)), we can get 𝐿𝐵2 = 𝛾∗ 𝑚∗ . 

𝐿𝐵∗ = Max{𝐿𝐵1, 𝐿𝐵2}



.

17

DGSM for groups of variables

Consider an arbitrary subset 𝑦 of 𝑥 = 𝑥1, . . . , 𝑥𝑛

𝑦 = 𝑥𝑖1
, . . . , 𝑥𝑖𝑠

, 1 ≤ 𝑠 < 𝑛,  the decomposition → 𝑥 = 𝑦, 𝑧

𝐷𝑦
𝑡𝑜𝑡 =

1

2
න 𝑓 𝑦′, 𝑧 − 𝑓 𝑥 2𝑑𝑥𝑑𝑦′

Consider the Taylor expansion

𝑓 𝑦′, 𝑧 − 𝑓 𝑥 = ෍

𝑝=1

𝑠
𝜕𝑓 𝑥

𝜕𝑥𝑖𝑝

(𝑥𝑖𝑝

′ − 𝑥𝑖𝑝
) +. . .

Sobol’ I.M., Kucherenko S. (2010) A new derivative based importance criterion for groups of 
variables and its link with the global sensitivity index S_total.  Comp. Physics Comm., 181(7)



.

DGSM for groups of variables. 𝜏𝑦

Consider an arbitrary subset 𝑦 of 𝑥 = 𝑥1, . . . , 𝑥𝑛

𝑦 = 𝑥𝑖1
, . . . , 𝑥𝑖𝑠

, 1 ≤ 𝑠 < 𝑛,  the decomposition 𝑥 = 𝑦, 𝑧

𝜏𝑦 = ෍

𝑝=1

𝑠

න
𝜕𝑓 𝑥

𝜕𝑥𝑖𝑝

2
1 − 3𝑥𝑖𝑝

+ 3𝑥𝑖𝑝

2

6
𝑑𝑥

Theorem 1G.  A general inequality holds

 𝑆𝑦
𝑡𝑜𝑡 ≤

24

𝜋2

𝜏𝑦

𝐷
.

For 𝑓 𝑥  linear with respect to 𝑥𝑖1
, . . . , 𝑥𝑖𝑠

 𝑆𝑦
𝑡𝑜𝑡 =

𝜏𝑦

𝐷
.

 

 Sobol’ I.M., Kucherenko S. (2010) A new derivative based importance criterion for groups of 
variables and its link with the global sensitivity index Stot.  Comp. Physics Comm., 181(7)
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Factor fixing

Assume, that 𝑣𝑖 ≪ 𝜀, then 𝑆𝑖
𝑡𝑜𝑡 ≪ 𝜀 . How can we use this information ?  

Theorem 𝛿*. Consider fixing 𝑥𝑖 = 𝑥𝑖
0, then the function approximation error 

𝛿 𝑥𝑖
0 =

׬ 𝑓(𝑥, 𝑦) − 𝑓 𝑥∼𝑖 , 𝑥𝑖
0, 𝑦

2
𝑑𝑥𝑑𝑦

𝐷

 𝐸[𝛿 𝑥𝑖
0 ] = 2 𝑆𝑖

𝑡𝑜𝑡.

If 𝑆𝑧
tot ≪ 𝜀 → 𝛿 𝑧0 ≪ 𝜀,    𝑧 can be fixed at 𝑧0 :

𝑓(𝑥) ≈ 𝑓 𝑦, 𝑧0 → complexity reduction from 𝑛 to 𝑛 − 𝑛𝑧 variables

Small values of DGSM always imply small values of Stot.

DGSM can be used for fixing unimportant variables.

*Sobol, I.M., S. Tarantola, D. Gatelli, S.S. Kucherenko, W. Mauntz (2007) Estimating the 
Approximation Error when fixing Unessential Factors in Global Sensitivity Analysis, Reliab Eng Syst
Saf 92(7): 957-960, 2007
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DGSM for functions with random variables

𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑛, independent r.v. with its measure

𝑑𝐹(𝑥) = ෑ

𝑘=1

𝑛

𝑑𝐹𝑘 𝑥𝑘

𝑣𝑖 = න
𝑅𝑛

𝜕𝑓(𝑥)

𝜕𝑥𝑖

2

𝑑𝐹(𝑥)

𝑤𝑖 = න
𝑅𝑛

𝜕𝑓(𝑥)

𝜕𝑥𝑖
𝑑𝐹(𝑥)

Further assume 𝑥𝑖 ∼ 𝑁 𝑎𝑖; 𝜎𝑖  :

Theorem 1N:

𝜎𝑖
2𝑤𝑖

2

𝐷
≤ 𝑆𝑖

𝑡𝑜𝑡 ≤
𝜎𝑖

2

𝐷
𝑣𝑖

S. Kucherenko, S. Song (2014) DGSM and their link with Sobol’ sensitivity indices. Monte 
Carlo and Quasi-Monte Carlo Methods 2014, Springer Proc. in Mathematics & Statistics 
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Test 1: Linear function

𝑓 𝑥 = 𝑎 𝑧 𝑥𝑖 + 𝑏 𝑧 , 𝑓(𝑥) ∈ 𝐶 𝐻𝑛

𝐷𝑖
𝑡𝑜𝑡 =

1

12
න

𝐻𝑛−1
𝑎2(𝑧)𝑑𝑧

Upper bounds :

𝑣𝑖 = න
𝐻𝑛−1

𝑎2(𝑧)𝑑𝑧 ⟶ 𝑈𝐵1 =
𝑣𝑖

𝜋2𝐷
≈ 1.22𝑆𝑖

tot ; 𝑈𝐵2 = 𝑆𝑖
tot 

Lower bounds :

𝐿𝐵1 = 0

𝐿𝐵2 = 𝛾(𝑚) =
(2𝑚 + 1)𝑚2 𝐻𝑑−1׬ 𝑎(𝑧)𝑑𝑧

2

4(𝑚 + 2)2(𝑚 + 1)2𝐷

 at 𝑚∗ = 3.745

⟶ 𝐿𝐵∗ ≈ 0.48𝑆𝑖
tot 
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Test 2: Ellipsoidal function

𝑓(𝒙) = ෍

𝑖=1

𝑛

𝑖𝑥𝑖
2

𝑛 = 5, 𝑥𝑖 ∈ [0,1]

Tight bounds around Stot
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DGSM for arbitrary input distributions

• 𝑓(𝑥),  𝑥 = 𝑥1, … , 𝑥𝑛  are independent R.V. with CDF 𝐹1 𝑥1 , … , 𝐹𝑝 𝑥𝑛  such that 

• Poincaré Inequality:

න 𝑓(𝑥)2𝑑𝐹(𝑥) ≤ 𝐶(𝐹) න  ∥ ∇𝑓(𝑥) ∥2 𝑑𝐹(𝑥)

        is satisfied. Here 𝐶(𝐹) is the Poincaré constant. 

Theorem*: 𝑆𝑖
𝑡𝑜𝑡 are bounded by DGSM 𝜈𝑖 :

𝐷𝑖
𝑡𝑜𝑡 ≤ 𝐶 𝐹𝑖 𝜈𝑖

With   𝐶 𝐹𝑖 = 4 sup
𝑥∈ℝ

min 𝐹𝑖(𝑥),1−𝐹𝑖(𝑥)

𝜌𝑖(𝑥)

2

• Analytical 𝐶 𝐹𝑡  for some distributions: normal, exponential, Beta, Gamma, Gumbel*.

*Lamboni et al (2013), Roustant et al. (2014), Roustant et al (2017).
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DGSM Based on Crossed Derivatives

• Crossed-DGSM Definition:

𝜈𝑖,𝑗 = න
𝜕2𝑔(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

2

𝑑𝐹(𝑥)

• Superset Importance:

D𝑖,𝑗
super 

= ෍

𝐼⊇{𝑖,𝑗}

𝐷𝐼

• Theorem:  For ∀ {𝑖, 𝑗} :

D𝑖,𝑗 ≤ D𝑖,𝑗
super 

≤ 𝐶 𝐹𝑖 𝐶 𝐹𝑗 𝜈𝑖,𝑗

• Application: Enables detection of non-interacting variable pairs. Higher-Order 
Interactions Screening

Roustant et al. (2014), Muehlenstaedt & Roustant (2012), Liu & Owen (2006).
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DGSM of the second type

Song et al. (2019):            𝜁𝑡 = 𝑅𝑝׬ 𝐴 𝑥𝑡
𝜕𝑓(𝑥)

𝜕𝑥𝑡

2
𝑑𝐹(𝑥)

Using the calculus of variations based on the Euler-Lagrange equation:

𝑆𝑡
𝑡𝑜𝑡 ≤

𝜁𝑡

𝐷

𝐴 𝑥𝑡 =
1

𝜌 𝑥𝑡
න

𝑅𝑃

𝜇𝑡 − 𝑥𝑡 𝑑𝐹(𝑥) + 𝐶

Distribution PDF 𝐴 𝑥𝑡

Exponential 𝐸(𝜆) 𝜆𝑒−𝜆𝑥,
𝑥 > 0
𝜆 > 0

1

𝜆
𝑥𝑡

Beta 𝐵(𝛼, 𝛽)

𝑥𝛼−1(1 − 𝑥)−1

𝐵(𝛼, 𝛽)
, 0 < 𝑥 < 1

𝛼, 𝛽 > 0

𝑥𝑡 1 − 𝑥𝑡

𝛼 + 𝛽

Gamma Γ(𝛼, 𝛽)
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒

−
1
𝛽

𝑥
,

𝑥 > 0
𝛼, 𝛽 > 0

𝛽𝑥𝑡

Triangular 𝑇(𝑎, 𝑐, 𝑏)

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
, 𝑎 < 𝑥 < 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
, 𝑐 < 𝑥 < 𝑏

1

− 𝑎
−

1

3
𝑥𝑡

3 +
1

2
𝜇1 + 𝑎 𝑥𝑡

2 − 𝜇1𝑎𝑥𝑡 + 𝐾1 , 𝑎 < 𝑥𝑡 <

1

𝑏 − 𝑥𝑡

1

3
𝑥𝑡

3 −
1

2
𝜇2 + 𝑏 𝑥𝑡

2 + 𝜇2𝑏𝑥𝑡 + 𝐾2 , 𝑐 < 𝑥𝑡 <

Uniform 𝑈(𝑎, 𝑏)
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏

𝑥𝑡 − 𝑎 𝑏 − 𝑥𝑡

2(𝑏 − 𝑎)

Normal 𝑁 𝜇, 𝜎2 1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 , −∞ < 𝑥 < +∞ 𝜎2
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II. Computing of DGSM 



.

Comparison of Convergence: Sobol’ sensitivity
indices versus DGSM

Speed up 10 times -> Convergence of DGSM is typically a several times than that for Stot 

Computational cost:  Stot = N*(n+2) * CPUF

DGSM (with numerical diff. ) = N*(n+1) * CPUF

DGSM (with algorithmic differentiation) =  5 * CPUF

   It is independent of the number of inputs n !

𝑌 = 𝑓 𝑋1, 𝑋2, 𝑋3 = sin 𝜋𝑋1 + 7 sin 𝜋𝑋2
2 + 0.1 𝜋𝑋3

4 sin 𝜋𝑋1 , 𝑋𝑖 ∈ [0,1]
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DGSM with Algorithmic differentiation

C. Molkenthin, F. Scherbaum, A. Griewank, H. Leovey, S. Kucherenko, F. Cotton (2017) Derivative-based 
global sensitivity analysis: Upper bounding of sensitivities in seismic hazard assessment using automatic 
differentiation, Bulletin of the Seismological Society of America, 107(2), 984.

Adjoint Algorithmic Differentiation AAD Not to Be Confused With 
Symbolic differentiation (computation of derivatives accurately using the code 
structure) 
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Computing DGSM using metamodels

1. Polynomial Chaos Expansions (PCE) represents 𝑌 = 𝑓(X), 𝑌 ∈ 𝐿2 as:

𝑌 = ෍

𝑗=0

∞

𝑎𝑗𝜙𝑗(X)

𝜙𝑗  are orthonormal polynomials (w.r.t. the input distribution of X ).

*PCE enables analytical DGSM computation with no extra simulations.

DGSM for PCE based on Hermite, Legendre, Laguerre polynomials are derived 
explicitly*.

*Sudret, B., Mai, C. V. (2015). Computing derivative-based global sensitivity measures using 
polynomial chaos expansions. Reliability Eng. & Syst. Safety, 134, 241-250.

2. Computing DGSM using  a Gaussian process metamodel:

De Lozzo, M., & Marrel, A. (2016). Estimation of the derivative-based global sensitivity 
measures using a Gaussian process metamodel. SIAM/ASA Journal on Uncertainty 
Quantification, 4(1), 708-738



.

III. Effective dimensions. Classification of 
functions



.
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Effective dimensions

Let u  be a cardinality of a set of variables 𝑢, 𝜀 ⋍ 0.01 

Define Sobol′ indices 𝑆𝑢 = 𝐷𝑢/𝐷.

The effective dimension of 𝑓(𝑥) in the superposition sense

is the smallest integer 𝑑𝑆 such that ෍

0< 𝑢 ≤𝑑𝑆

𝑆𝑢 ≥ 1 − 𝜀 

It means that 𝑓(𝑥) is almost a sum of 𝑑𝑆−dimensional functions.

The function 𝑓(𝑥) has the effective dimension in the truncation sense 𝑑𝑇 if

෍

𝑢⊆{1,2,...,𝑑𝑇}

𝑆𝑢 ≥ 1 − 𝜀

Example 1 : 𝑓 𝑥 = ෍

𝑖=1

𝑛

𝑥𝑖  , 𝑥𝑖 ∼ 𝑈 0,1 → 𝑑𝑆 = 1, 𝑑𝑇 = 𝑛

Example 2 : 𝑓 𝑥 = 𝑓0 + ෍

𝑖=1

𝑛

𝑓𝑖 𝑥𝑖 + ෍

𝑖

෍

𝑗>𝑖

𝑓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 → 𝑑𝑆 = 2, 𝑑𝑇 = 𝑛

_________________________________________________________
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Type B. 

Dominant low order terms

 

1

1
n

i

i

SS nd
=

  

Classification of functions

Type B,C. Variables are 

equally important

i j TS S nd  

Type A. Variables are 

not equally important
T T
y z

y z

T

S S
n

n n
d  

Type C. Dominant

higher order terms 

1

1
n

i

i

SS nd
=

  

Kucherenko S., Feil B., Shah N., Mauntz W.  The identification of model effective dimensions 
using global sensitivity analysis Reliab. Eng. Syst. Saf. 96 (2011) 440–449 
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Classification of functions. Efficiencies of MC/QMC/LHS

Function 

type

Description Relationship 

between

Si and Si
tot

dT dS QMC is 

more 

efficient 

than MC

LHS is 

more 

efficient 

than MC

A A few dominant 

variables Sy
tot/ny >> Sz

to / nz

<< n << n Yes No

B No unimportant 

subsets; only low-

order interaction terms 

are present

Si ≈ Sj,  i, j

Si
 / Si

tot  ≈ 1,  i

≈ n << n Yes Yes

C No unimportant 

subsets;  high-order 

interaction terms are 

present
Si ≈ Sj,  i, j

Si / Si
tot << 1,  i

≈ n ≈ n No No

S. Kucherenko, D. Albrecht, A. Saltelli, Exploring multi-dimensional spaces: a Comparison of Latin 

Hypercube and Quasi Monte Carlo Sampling Techniques, 2015 arXiv:1505.02350 

http://arxiv.org/abs/1505.02350
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Derivative based effective dimension

Recall:  𝑓(𝑥) has the effective dimension in the truncation sense 𝑑𝑇 if

෍

𝑢⊆{1,2,...,𝑑𝑇}

𝑆𝑢 ≥ 1 − 𝜀

Theorem*: If there exists an integer 𝑚 such that

1

𝜋2𝐷
∑𝑗=𝑚+1

𝑛 𝑣𝒋 ≤ 𝜀, 

then the effective dimension in the truncation sense 𝑑𝑇 ≤m; 𝜀 ⋍ 0.01

*Jansen, K., Leovey, H., Ammon, A., Griewank, A., & Müller-Preussker, M. (2014). Quasi-
Monte Carlo methods for lattice systems: a first look. Comp. Physics Comm., 185(3)



.
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Active Subspaces

𝑓 𝑥  ∈ С1,  R. V. 𝑥 ∈ ℝ𝑛 ,  𝑥~ 𝑝 𝑥 ,    
𝜕𝑓 𝑥

𝜕𝑥𝑖
∈ 𝐿2, ∀𝑖 = 1, … , 𝑛 

Compute matrix 𝐶 = ׬ 𝛻 𝑓(𝑥)𝛻𝑓(𝑥)𝑇𝜌(𝑥)𝑑𝑥 

Find eigenvalue decomposition: 𝐶 = 𝑊𝛬𝑊𝑇, 

𝛬 = 𝑑𝑖𝑎𝑔 𝜆1, … 𝜆𝑑 , 𝜆1 ≥ ⋯ ≥ 𝜆𝑑 are eigenvalues, 
𝑊 - orthogonal matrix of eigenvectors in ℝ𝑛. 

If there is a large gap between {𝜆1, … ,𝜆𝑘} and {𝜆𝑘+1, …, 𝜆𝑛},

find a partition 𝛬 =
𝛬1 
 𝛬2

, 𝑊 = [𝑊1 𝑊2],

𝑊1 - eigenvectors of the top 𝑘 eigenvalues (𝑘 ≪ 𝑛), dim (𝑊1 )=n x k

Their span is called the “active subspace” (AS) .

Constantine, P.G.: Active Subspaces: Emerging Ideas for Dimension Reduction in
Parameter Studies. SIAM (2015) 37
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𝑥 = 𝑊𝑊𝑇𝑥 = 𝑊1𝑦 + 𝑊2𝑧,

𝑦 = 𝑊1
𝑇𝑥 ,   𝑦 ∈ ℝ𝑘 - active variables, 

z  = 𝑊2
𝑇𝑥,  z ∈ ℝ𝑛−𝑘− inactive variables

Approximate 𝑓 𝑥 : 𝑓 𝑥 = 𝑓 𝑊1𝑦 + 𝑊2𝑧 ≈ 𝑔 𝑦 ,

𝑔(𝑦) requires low computational efforts when 𝑘 ≪ 𝑛 

Diagonal elements of matrix C:  𝐶𝑖,𝑗 = ׬
𝜕𝑓 𝑥

𝜕𝑥𝑖

𝜕𝑓 𝑥

𝜕𝑥𝑗
𝜌 𝑥 𝑑𝑥,

are DGSM:                       𝜈𝑖= 𝐶𝑖,𝑖

Activity Scores:  𝑎𝑡 = ∑𝑗=1
𝑘 𝜆𝑗𝑤𝑡,𝑗

2  , with 𝑎𝑡 𝑘 ≤ 𝜈𝑡;

𝑎𝑡 𝑘 = 𝑛 = 𝜈𝑡

rank inputs by contribution to the active subspace.

Constantine, P.G. and Diaz, P. (2017) Global Sensitivity Metrics from Active Subspaces, Reliab. 
Eng. Syst. Safety, 162:1–13.

Active Subspaces. Link with DGSM
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Test case: 100-dimensional quadratic model

➢ {xi } ∈ [0,1]100 The first eigenvalue 

is significantly larger 

than the rest.

➢ Global SA: the importance of the inputs 

depends on their coefficients: a larger 

coefficient means higher importance of the 

corresponding input. 

➢ Global SA: 10 important inputs in total

𝑓(𝑥) = ෍

𝑖=1

100

𝑐𝑖𝑥𝑖

2

5c  15c  25c  35c  45c  55c  65c  75c  85c  95c  The rest 

5 15 25 35 45 55 65 75 85 95 1 

 1 

0 20 40 60 80 100
10-11

10-6

10-1

104

109

E
ig

en
v
al

u
e

Index 

➢ The gap in the eigenvalues indicates a 

separation between active and inactive 

subspaces

➢ Hence there is 1D active subspace

Zhou, C., Shi, Z., Kucherenko, S., & Zhao, H. (2022). A unified approach for global sensitivity 
analysis based on active subspace and Kriging. Reliab. Eng. Syst. Saf. 217
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100-dimensional quadratic model

➢ Scatter plot  𝑦𝑖 , 𝑓 𝒙𝑖 − univariate dependence → g(y) ∶ 

➢ A metamodel built in 1D active subspace accurately captures the behavior of the full model

➢ Global SA: model reduction from d=100 to 10D (fixing non important inputs)

➢ AS:    model reduction from d=100 to 1D   (rotation of the domain produced by the 

eigenvector 𝑊1)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

5.0x104

1.0x105

1.5x105

2.0x105

 Initial training sample 

 Adaptively added sample

 Kriging model

y

Active variable,u
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Computation of Sobol SI using 1D metamodel in AS

➢ Accurate computation of 100 Sobol SI in 100 dim model using only 1D 
metamodel in AS

5 15 25 35 45 55 65 75 85 95
0.0

0.2

0.4

0.6

0.8

1.0

N
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ed
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v
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 i

n
d

ex

Most important input variables, xi 

 DGSM by proposed approach

 DGSM by MCS

 Activity score by by proposed approach(1D)

 Activity score by by proposed approach(2D)

 Activity score by MCS

 Total effect index by proposed approach(1D)

 Total effect index by proposed approach(2D)

 Total effect index by MCS

 Total effect index by Kriging in the whole input space
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VI. Shapley Values
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Shapley Values

𝑁 = {1,2, … , 𝑛} be the set of players (features).

𝑣𝑎𝑙(𝑢) be the payoff (value function) for a subset 𝑢 ⊆ 𝑁.

𝜙𝑖  be the Shapley value for player 𝑖.

Properties of Shapley Values 𝜙𝑖  :

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚: ෍

𝑖∈𝑁

𝜙𝑖 = 𝑣𝑎𝑙 𝑁

𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒚:  If 𝑣𝑎𝑙 𝑢 ∪ {𝑖} = 𝑣𝑎𝑙 𝑢 ∪ {𝑗}  for ∀𝑢 ⊆ 𝑁 ∖ {𝑖, 𝑗},  then 𝜙𝑖 = 𝜙𝑗

𝑫𝒖𝒎𝒎𝒚 𝑷𝒍𝒂𝒚𝒆𝒓:  If 𝑣𝑎𝑙 𝑢 ∪ {𝑖} = 𝑣𝑎𝑙 𝑢  for ∀𝑢 ⊆ 𝑁,  then 𝜙𝑖 = 0

𝑨𝒅𝒅𝒊𝒕𝒊𝒗𝒊𝒕𝒚: For games 𝑣 and 𝑤,  𝜙𝑖 𝑣 + 𝑤 = 𝜙𝑖 𝑣 + 𝜙𝑖 𝑤  for ∀𝑖 ∈ 𝑁

𝜙𝑖 = ෍

𝑢⊆𝑁∖{𝑖}

|𝑢|! (|𝑁| − |𝑢| − 1)!

|𝑁|!
(𝑣𝑎𝑙(𝑢 ∪ {𝑖}) − 𝑣𝑎𝑙(𝑢))
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Sobol’ indices and Shapley value

Owen (2014), Owen & Prieur (2017) used the main effect Sobol’ index to define value 

function as   𝑣𝑎𝑙(𝑢) = 𝑆𝑢

then the Shapley value for a player 𝑖:

𝜙𝑖 = ෍

𝑢⊆𝑁∖ 𝑖

𝑢 ! 𝑁 − 𝑢 − 1 !

𝑁 !
𝑆𝑢∪ 𝑖 − 𝑆𝑢

Theorem*:    

𝜙𝒊 = ∑𝑢⊆1:𝑛,𝑖∈𝑢
𝐷𝑢

|𝑢|
.

Then

𝑆𝑖  ≤ 𝜙𝑖  ≤ 𝑆𝑖
𝑡𝑜𝑡

*Owen, A. B. (2014). SIAM/ASA Journal on Uncertainty Quantification, 2(1), 245-251.

Owen, A. B., & Prieur, C. (2017). SIAM/ASA Journal on Uncertainty Quantification, 5(1), 986-1002.
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SHAP (SHapley Additive exPlanations) and 
Explainable AI (XAI)

In machine learning, SHAP is used to explain the model output.

It treats the model's prediction as the "payoff" and the features as the "players." 

Additive Contribution of Features in model's prediction: 

𝑓(𝑥) = 𝜙0 + ෍

𝑖=1

𝑀

𝜙𝑖

• 𝜙0 is the baseline prediction (the average prediction over the dataset),

• 𝜙𝑖  is the Shapley value for the feature 

• 𝑀 is the total number of features.
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Limitations of SHAP

1.Computational Complexity:
requires evaluating all possible subsets of features: 2M  evaluations

2.Assumption of Feature Independence:
assumes that features are independent, which may not hold in real-world 
datasets.

3.Handling of Higher-Order Interactions:
struggles to capture complex interactions between features, especially in 
high-dimensional data

4. Unreliable outcomes  
may assign excessive importance to improbable instances. 
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• Model 𝑓(𝑥), 𝑥 = 𝑥1, ⋯ , 𝑥𝑛

• Denote the partial derivative of 𝑓(𝑥) with respect to 𝑥𝑖 as

𝜕𝑓(𝑥)

𝜕𝑥𝑖
= 𝜕(𝑖)𝑓

Define the derivative-based importance of subset 𝑢:

𝑣𝑎𝑙(𝑢) = ෍

𝑖∈𝑢

෍

𝑗∈𝑢,𝑗≥𝑖

𝔼 𝜕(𝑖)𝑓𝜕(𝑗)𝑓 =

෍

𝑖∈𝑢

𝔼 𝜕(𝑖)𝑓2 + ෍

𝑖,𝑗∈𝑢,𝑗>𝑖

𝔼 𝜕(𝑖)𝑓𝜕(𝑗)𝑓

 = ෍

𝑖∈𝑢

𝛼𝑖(𝑑) + ෍

𝑖,𝑗∈𝑢,𝑗>𝑖

𝔼 𝜕(𝑖)𝑓𝜕(𝑗)𝑓

Here ∑𝑖∈𝑢 𝔼 𝜕(𝑖)𝑓2 = ∑𝑖∈𝑢 𝛼𝑖 𝑛 = ∑𝑖∈𝑢 𝑣𝑖, 𝛼𝑖 is the activity scores.

Duan H, Okten G. Derivative-based Shapley value for global sensitivity analysis and 
machine learning explainability. Int. J. for Uncertainty Quant. 2025;15(1).

Derivative-based Shapley value (DerSHAP)
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Derivative-based Shapley value: DerSHAP

DGSM−based importance of subset 𝑢:

𝑣𝑎𝑙 𝑢 = ∑𝑖∈𝑢 ∑𝑗∈𝑢,𝑗≥𝑖 𝔼 𝜕 𝑖 𝑓𝜕 𝑗 𝑓  

= ෍

𝑖∈𝑢

𝔼 𝜕 𝑖 𝑓2 + ෍

𝑖,𝑗∈𝑢,𝑗>𝑖

𝔼 𝜕 𝑖 𝑓𝜕 𝑗 𝑓

Theorem 1. The Shapley value for the derivative-based importance function:

𝜙𝑖 = 𝔼 𝜕(𝑖)𝑓2 +
1

2
෍

𝑗=1,𝑗≠𝑖

𝑛

𝔼 𝜕(𝑖)𝑓𝜕(𝑗)𝑓

= 𝑣𝑖 +
1

2
෍

𝑗=1,𝑗≠𝑖

𝑑

𝔼 𝜕(𝑖)𝑓𝜕(𝑗)𝑓

DerSHAP generalizes DGSM by introducing interaction terms between partial derivatives while 
adopting a Shapley value framework

DerSHAP complexity using MC is 𝑂(𝑛𝑁) vrs SHAP - 2𝑛 terms. 

DerSHAP can be used with dependent variables
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Boston housing data
and activity scores

Figure. DerSHAP and KernelSHAP values for independent inputs

DerSHAP works with dependent data; KernelSHAP does not

Target to predict: MEDV (median value of owner-occupied homes in $1000’s)
Input features: 8 input features (socioeconomic & property characteristics)

Computational time comparison
Model Method Time

SVR DerSHAP 6.81 sec.

KernelSHAP 3.7 hours



.

Other DGSM extensions

• M. Lamboni, S. Kucherenko (2021) Multivariate sensitivity analysis and derivative-based global 

sensitivity measures with dependent variables, Reliab Eng Syst Saf 212 107519

• M. Lamboni, S. Kucherenko (2025) Active subspace methods and derivative-based Shapley' effects 

for functions with non-independent variables, submitted to Math. and Comp. in Simulation. 

• SAMO 2025 Presenations:

• Giray Okten, Ruilong Yue, Global activity scores.

• Mayer Patricia, Derivative-based Global Sensitivity Analysis for Energy System Optimization Models 

via Implicit Differentiation

• Yang Jiannan [et al.], Derivative-based upper bound for entropic total effect sensitivity with high 

dimensional and dependent inputs

• Lüthen Nora, Gradient-enhanced surrogate modelling and sensitivity analysis with chaos expansions

• ….
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DGSM Software

Derivative-based measures in Matlab (Kucherenko and  Song, 2014):
https://ec.europa.eu/jrc/en/samo/simlab

GUI driven global sensitivity analysis and metamodeling software SobolGSA
(Kucherenko and Zaccheus, 2025).
http://www.imperial.ac.uk/process-systems-engineering/research/free-
software/sobolgsa-software/

SALib - an open-source Python library for Sensitivity Analysis (Herman and Usher (2017)) 
https://github.com/SALib/SALib

Package ‘sensitivity’ (Iooss et al. (2020)) https://cran.r-project.org/web/packages/sensitivity/

https://ec.europa.eu/jrc/en/samo/simlab
http://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/
http://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/
https://github.com/SALib/SALib
https://cran.r-project.org/web/packages/sensitivity/
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◼ DGSM bounds provide good estimates of Stot at much lower 
computational cost.

◼ Small DGSM values guarantee small Stot, making DGSM effective for fixing.

◼ Bounds can be computed via MC/QMC using partial derivatives, or 
efficiently obtained via adjoint AD.

◼ Low computational cost of DGSM makes them attractive for use in 
Derivative-based Shapley value, active subspaces and other applications 

Summary
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