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Why so many published sensitivity analyses are false?
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Fig. 7. Results from Ferretti et al., extended to 2016 (present paper).

e Modely = f(x), x = {xq, ..., Xp}, f(x) € C(H")

e Local sensitivity (OAT): partial derivative dy/dx; at a nominal point x*
e If fis nonlinear, dy/dx; varies across x;.

e With input interactions, dy/dx; depends on other factors.

e Partial derivatives are only reliable for linear models.

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., ... & Wu, Q. (2019).
Why so many published sensitivity analyses are false: A systematic review of sensitivity
analysis practices. Environ. modelling & software, 114, 29-39.



Derivative-Based < Variance-Based
Sensitivity Measures: A Mathematical Bridge
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Derivative-based methods (e.g. DGSM) provide bounds or approximations
for variance-based indices (e.g. Sobol’).
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The Bridge between local and global measures
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Pros and Cons of Variance-based
Sensitivity Indices

Pros: Variance-based sensitivity (Sobol’) indices offer a
comprehensive approach to the model analysis.

Cons: Generally require a large number of function evaluations
to achieve convergence -> become impractical for complex

high dimensional problems.

Practical Alternative: Screening methods



Model f(x) € C(H™)

Elementary Effect for the ith factor at x°

EE;(x), ...,

X2

Morris screening method

X2

G——-
(X°1, X%) (X1 +A, X%)

X1

X1
xO) _ f(xf,xg, s XP1, X0+ A X, x,(,{) — 1 (x?, e xd)
9N =

A

r elem. effects EEL. EE? ... EE", are computed at randomly
chosen X1, ..., X" from the fixed grid (levels)

Average of {EE)} > p; = %Z};lEEi(j)

Standard deviation of {EE.} = o,

To avoid cancelation effect*:

Average of |EE,| > u; == %Z§:1 |EEl-(j)|

Campolongo F, Cariboni J, Saltelli A. Environ Modell Software, 2007;22)



Derivative based Global Sensitivity Measures : DGSM

1. Morris measure in the limitA - 0

. 0
Bt o 30) = IR, ) = 2L

2. Bridging the Gap: From Discrete sum to an integral:

L,-based global sensitivity measures (DGSM) [1]:
* SE — 1/2
Mi = fHTl |Ei|dx' Z:i - [fHTl(lEll - Mi )2 dX]

2

L,-based DGSM: v; = an (%) dx
. e _ A 2?:1Gi
Alternative global sensitivity measure (G;=v;) [2]: Gg = S
i=1Y1i

[1] Kucherenko S., Rodriguez-Fernandez M., Pantelides C., Shah N.. (2009) Monte Carlo evaluation of
derivative based global sensitivity measures. Reliab Eng Syst Saf, 94(7).

[2] Sobol’ I, Gresham A. On an altenative global sensitivity estimators. In: Proceedings of SAMO,
Belgirate, 1995.



Pros and Cons of DGSM

Questions:
Are DGSM less CPU time demanding than variance based?
Do they have a link with Sobol” sensitivity indices ?

How can they be used ?



Derivative based global sensitivity
measures. Upper and Lower bounds

Theorem 1. Assume that ¢ < < C. D— total variance. Then

8xi
< < glot < c*
12D — "V T 12D
Proof
1
Dot = z [f(x) —f (x)]z dxdx]
l - 2 l
H™ 0
o of (x ,
f(x) —f(x) = ];x (x; — x;)

where is X a point between x and x

Sobol’ I.M., Kucherenko S. (2009) Derivative based Global Sensitivity Measures and their link
with global sensitivity indices, Math. and Comp. in Simul., 79(10) 3009-3017
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Derivative based global sensitivity
measures. Upper bounds

0
e ) (22

[ (Y
vi—an< o, ) dx

d
w™ = j xm [ dx,m >0

l
Hn axi

2
¢ = %f x; (1 — x; <6]afix)> dx
H" [

} €L2(HY),Vi=1,..,n

Consider the full set of derivative based measures:

Y; = {vi,w.(m),gi},m >0

l

11



Derivative based global sensitivity
measures V.. Proof components

FOO = fot ) FiGD+ ) fi(cx) ot fign e )
i i<j
denote the sum of all terms in ANOVA that depend on x;:

n
() = 0D+ ) Sy ) + o fia(on )
j=1,j#i
Obviously f u;(x)dx = 0.
HN
Denote z = (x4,...,Xj_1, Xi+1,---, Xn) the vector of all variables but x;,

then x = (x;,z) and f(x) = f(x;, 2).

of oy

f) =u;(x;,2) + V(2), 3% Br.
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Derivative based global sensitivity
measure V.. Upper bound UB1

Theorem UB1. S/°" < 7'[1;_iD

Proof:

of o,
D.tOt =f 2 d ; = l
' N i (x) X dx axi

i

\2
Using foluiz (x)dx; < = [ (%) dx; =

27 0 \9x;

(%]

UB1 =
2D

Small v; corresponds to small S}°¢

13



Derivative based global sensitivity
measure ¢, . Upper bound UB2

Theorem UB2. §/°¢ < %

Proof:
1 d
oet[ a2
H" Xi

1
-1 [ aa -
0

2
\2
Using foluizdx < %folx(l — X) (Z—ZZ) dx
Gi
UB2 = —
D

S. Kucherenko, S. Song (2014) DGSM and their link with Sobol’ sensitivity indices. Monte Carlo
and Quasi-Monte Carlo Methods 2014, Springer Proc. in Mathematics & Statistics

14



DGSM. Lower bound LB1

Theorem LB1.

(Jyn [ (L2)=FO.D]If (L2)+£(0.2)-2f ()] dx)”
4v;D

< sfot
l

Proof:
Using Cauchy—Schwarz inequality |
ou;(x ? ou; (x)\°
(j u;(x) i )dx> Sj uiz(x)dx-j ( i( )> dx —»0O
Hn axi Hn HN axi

(fya F(L2) = FO.DIFL2) + £(0,2) — 2f (O)]dx)’
4UiD

LB1 =

15



Derivative based global sensitivity
measures. Lower bound LB2

Theorem LB2.

@m+D)|fyn (F(12)- f(x))dx_wi(m+1)]2
(m+1)?D

y(m) = <S5

. o0f(x ou; (X
Proof: ™ :J X" f( )dx :j £m i( )dx,'m >0
Hn Hn

L axi ' axi

2
Using (f xl?"ul-(x)dx> < j xFMdx - J uf (x)dx -0
H™ H™ H™

Atm* = argmax(y(m)), we can get LB2 = y*(m?*).

LB* = Max{LB1,LB2}

16



DGSM for groups of variables

Consider an arbitrary subset y of x = (xq,...,x;,)

y = (xil, iy .,xl-s), 1 < s < n, the decomposition —» x = (y, z)

1
Dyt == [/, 2) = FPdxdy

Consider the Taylor expansion

of (x

axi
1%

o fe0 =Y Tt )+
p=1

Sobol’ .M., Kucherenko S. (2010) A new derivative based importance criterion for groups of
variables and its link with the global sensitivity index S_total. Comp. Physics Comm., 181(7)

17



DGSM for groups of variables. 7,

Consider an arbitrary subset y of x = (xq,...,x;)
y = (xl-l, . ..,xis), 1 < s < n, the decomposition x = (y, z)

2
_ij af(x) 1—3xlp+3xlzpd
Ty B axi 6 x

Theorem 1G. A general inequality holds

StOt < ﬁr_y
O )
. . tot Ty
For f(x) linear with respect to x; ,...,x; S;°" = nR

Sobol’ .M., Kucherenko S. (2010) A new derivative based importance criterion for groups of
variables and its link with the global sensitivity index St°t. Comp. Physics Comm., 181(7)



Factor fixing
Assume, that v; < ¢, then SitOt « € .How can we use this information ?

Theorem 6*. Consider fixing x; = xl-o, then the function approximation error

— Fle x|
5(x) = LU &) f(»[c;,xl,y)l dxdy

E[s(x?)] = 2 5f".

If SIOU « ¢ > §(29) < &, z can be fixed at z° :

f(x) = f(y, zy,) - complexity reduction from n to n — n, variables

Small values of DGSM always imply small values of S,

DGSM can be used for fixing unimportant variables.

*Sobol, I.M., S. Tarantola, D. Gatelli, S.S. Kucherenko, W. Mauntz (2007) Estimating the
Approximation Error when fixing Unessential Factors in Global Sensitivity Analysis, Reliab Eng Syst
Saf 92(7): 957-960, 2007



DGSM for functions with random variables

x = (xq,...,%X,) € R", independent r.v. with its measure
n

ar) = | | dFea)

k=1

()Y
vi—jRn( ox, ) dF (x)
of (x)

i —
RN axi

dF (x)

Further assume x; ~ N(a;; 0;) :

Theorem 1N;:

O-L'ZVVL'2 tot 01'2
L L gghot <L

D D i

S. Kucherenko, S. Song (2014) DGSM and their link with Sobol’ sensitivity indices. Monte
Carlo and Quasi-Monte Carlo Methods 2014, Springer Proc. in Mathematics & Statisticso



Test 1: Linear function

fx) =a(2)x; +b(2), f(x)eCH")

1
Dfet = j a’(2)dz
12} s (2)

Upper bounds :
v = f a%(z)dz — UB1 = —— ~ 1.225/°";UB2 = 5!°
Hn—l 1T D
Lower bounds :
LB1 =0 )

2m+ D)m?([, 4 a(z)dz)2
4(m + 2)?(m + 1)?D

LB2 =y(m) = - — LB* ~ 0.485L0%

atm* = 3.745 y

21



Measures

Test 2: Ellipsoidal function

n

) =) ix?

i=1
n =5, x; €10,1]

-3
-10 1 | |
% 2 x3 x4 *5
Variable

Tight bounds around Stet



Other Derivative-Based Global Sensitivitiy Measures

Higher-order
interaction screening

JANUAN =

2

D; < CPEM ;xf,

Crossed Derivatives DGSM with Arbitrary Second-Type DGSM
(Vij) Distributions (E¢)
2
ﬂ Normal Beta Uniform
, Euler-Lagrange
8:& J

analysis

23



DGSM for arbitrary input distributions

e f(x), x=(xq,..,x,) are independent R.V. with CDF F; (x;), ..., F,(x,,) such that

e Poincaré Inequality:
| rerarey < e | 1w 1? dr

is satisfied. Here C(F) is the Poincaré constant.
Theorem*: SI°t are bounded by DGSM v; :
D°t < C(F)v;

] 2
With F) = 4 mln(Fi(x),l—Fi(x))]
T COF) =4 |sup=——""5

e Analytical C(F;) for some distributions: normal, exponential, Beta, Gamma, Gumbel*.

*Lamboni et al (2013), Roustant et al. (2014), Roustant et al (2017).

24



DGSM Based on Crossed Derivatives

e Crossed-DGSM Definition:

[ (229’
Vi'j _j <0xi6xj> dF(x)

super
D; ; = z D,

I={i,j}

e Superset Importance:

e Theorem: ForV {i,j}:

D super

=Dj;

ij = < C(F)C(Fj)vy

e Application: Enables detection of non-interacting variable pairs. Higher-Order
Interactions Screening

Roustant et al. (2014), Muehlenstaedt & Roustant (2012), Liu & Owen (2006).

25



DGSM of the second type

Song et al. (2019): §e = Jop Alxy) (agix))z dF (x)

Using the calculus of variations based on the Euler-Lagrange equation:

St

S¢%t <=
D
A(x:) = [ (ue — x¢)dF (x) + C]
p(xe) | Jrp
Distribution PDF A(xe)
- x>0 1
Exponential E (1) Ae ™, 1>0 1%
x* 11 —-x)t
Beta B(a, ) W' Osx<t x(1 - x)
eta B(a, ,
a,f >0 a+p
G T 1 a-1 —%x x>0
amma '(a, B) F(a),[)’“x e b7, @B >0 Bx;
2(x —a) 1 1, 1 )
m,a<x<c _—a[—gxt+E(,u1+a)xt—,ulaxt+1(1],a<xt
Triangular T'(a, c, b) 2(b — x) 1 11 1
m,c<x<b —x[gx?—E(uz+b)xf+u2bxt+K2],c<xt<
- - - Xt
x—a (x¢ —a)(b — x¢)
Uniform U(a, b) b_a'a<x<b T 206-a
N IN(u,02) ! _(XZ_F?2 <x<+ 2
ormal N(u, o e 202 ,—c0<x o0 o
V2ro




Il. Computing of DGSM

Do DGSM require
less CPU time?

&

Derivative-based
global
sensitivity

measures

Variance-based
methods

27



Comparison of Convergence: Sobol’ sensitivity
indices versus DGSM

Y = f(X1, X5, X3) = sin(nX,) + 7sin(nX,)? + 0.1(wX3)* sin(mX;), X; € [0,1]

DT T T T T T T T T T 14

12r

10F

Sti{lnput1)
o o
a2 B

Millnputt)

[=-a]

log2(N) log2(N)

Speed up 10 times -> Convergence of DGSM is typically a several times than that for Stt

Computational cost: St°t=N*(n+2) * CPU,

DGSM (with numerical diff. ) = N*(n+1) * CPU;
DGSM (with algorithmic differentiation) = 5 * CPU,
It is independent of the number of inputs n !



DGSM with Algorithmic differentiation

10721 ‘ | | | ; 70
] e ADM: reverse mode AD
= T M: forward mode AD . 60 -
_3 )
— 10 s
% A 50
5 <
Fd o)
o £ 40
o 4 =
2 107 =)
4; ESO
1)
2 £,
=107 o
> .g
© S 10 -
1076 ‘ ' ‘ ‘ 0 ' ‘ ‘ '
0 20 40 60 80 100 0 20 40 60 80 100
d, dimension d, dimension

Adjoint Algorithmic Differentiation AAD Not to Be Confused With
Symbolic differentiation (computation of derivatives accurately using the code
structure)

C. Molkenthin, F. Scherbaum, A. Griewank, H. Leovey, S. Kucherenko, F. Cotton (2017) Derivative-based
global sensitivity analysis: Upper bounding of sensitivities in seismic hazard assessment using automatic
differentiation, Bulletin of the Seismological Society of America, 107(2), 984. 29



Computing DGSM using metamodels

1. Polynomial Chaos Expansions (PCE) represents Y = f(X), Y € L? as:

j=0

{qu} are orthonormal polynomials (w.r.t. the input distribution of X ).

*PCE enables analytical DGSM computation with no extra simulations.

DGSM for PCE based on Hermite, Legendre, Laguerre polynomials are derived
explicitly*.

*Sudret, B., Mai, C. V. (2015). Computing derivative-based global sensitivity measures using
polynomial chaos expansions. Reliability Eng. & Syst. Safety, 134, 241-250.

2. Computing DGSM using a Gaussian process metamodel:

De Lozzo, M., & Marrel, A. (2016). Estimation of the derivative-based global sensitivity

measures using a Gaussian process metamodel. SIAM/ASA Journal on Uncertainty
Quantification, 4(1), 708-738

30



lll. Effective dimensions. Classification of
functions

EFFECTIVE
DIMENSIONS

/7N
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Effective dimensions

Let |u| be a cardinality of a set of variables u, & = 0.01
Define Sobol’ indices S,, = D,,/D.

The effective dimension of f(x) in the superposition sense

is the smallest integer ds such that Z Su=1—¢
0<|u|=dg
It means that f(x) is almost a sum of dg¢—dimensional functions.

The function f(x) has the effective dimension in the truncation sense d if

Su=1—¢
uc{1,2,..dr}

n
Example 1: f(x) = le- , x; ~U[01] >ds=1,dr =n
i=1
n
Example 2: f(x) = fp + Zfi(xi) + ZZfij(xi,xj) —>d¢=2,dr=n
i=1

i j>i
32



Classification of functions

Type A. Variables are
not equally important

S! ST
—L>> L «>d; <<n
n, n,
Type B. Type C. Dominant
Dominant low order terms higher order terms
n n
ZSiz1<—>dS <<n ZSi <<l dg ~n
= —

Kucherenko S., Feil B., Shah N., Mauntz W. The identification of model effective dimensions
using global sensitivity analysis Reliab. Eng. Syst. Saf. 96 (2011) 440-449



Classification of functions. Efficiencies of MC/QMC/LHS

Function Description Relationship d; ds QMCis | LHSis
type between more more
S; and S;t efficient | efficient
than MC | than MC
A A few dominant <<n |<<n Yes No
variables S,/%n, >>35°/n,
B No unimportant ~n <<n Yes Yes
subsets; only low- S ~S Vi
order interaction terms g;é%tNZJv.
are present il o =4V
C No unimportant ~nN ~n No No
subsets; high-order
interaction terms are | §. ~ Si, Vi, ]

present

S/ S << 1, Vi

S. Kucherenko, D. Albrecht, A. Saltelli, Exploring multi-dimensional spaces: a Comparison of Latin
Hypercube and Quasi Monte Carlo Sampling Techniques, 2015 arXiv:1505.02350



http://arxiv.org/abs/1505.02350

Derivative based effective dimension

Recall: f(x) has the effective dimension in the truncation sense d if

Z Su=1—¢

uc{1,2,..dr}

Theorem*: If there exists an integer m such that

1

mop Lj=m+1 Vj = &

then the effective dimension in the truncation sense dr <m; € = 0.01

*Jansen, K., Leovey, H., Ammon, A., Griewank, A., & Miiller-Preussker, M. (2014). Quasi-
Monte Carlo methods for lattice systems: a first look. Comp. Physics Comm., 185(3)
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Active Subspaces

f(x) €Cl, RV.x e R"*, x~p(x), {agj)} eEL’Vi=1,..,n

Compute matrix C = [V f(x)Vf(x)T p(x)dx
Find eigenvalue decomposition: C = WAWT,
A =diag(Aq,...14), 14 = -+ = A4 are eigenvalues,

W - orthogonal matrix of eigenvectors in R™.

If there is a large gap between {44, ..., Ax} and {Ax41, ..., 411},
: » A
find a partition A = [ A ], W =[W; W,],

2

W, - eigenvectors of the top k eigenvalues (k < n), dim (W; )=n x k

Their span is called the “active subspace” (AS) .

Constantine, P.G.: Active Subspaces: Emerging Ideas for Dimension Reduction in
Parameter Studies. SIAM (2015)

37



Active Subspaces. Link with DGSM
x=WWTx =W,y + W,z,

y=WIx, y€R¥-active variables,
z =WTx, ze€ R"¥-inactive variables

Approximate f(x): f(x) = f(Wy + Wyz) = g(y),

g(y) requires low computational efforts when k <« n

Diagonal elements of matrix C: C; ; ='fagi’_c) agi’f)p(x)dx,
i j

are DGSM: V= Ci,i

Activity Scores: a; = ?:1 Angj , with a; (k) < vg;

ar(k =n) = v,

rank inputs by contribution to the active subspace.

Constantine, P.G. and Diaz, P. (2017) Global Sensitivity Metrics from Active Subspaces, Reliab.
Eng. Syst. Safety, 162:1-13.



Test case: 100-dimensional quadratic model

> {x;} € [0,1]1° f(x) = Z C;X; The first eigenvalue
. Is significantly larger
than the rest.

C; Cs Cp Cy Cg Cy Cp Cp Cg Cp  Therest

5 15 25 35 45 55 65 75 85 95 1 10*

Eigenvalue
3

» Global SA: the importance of the inputs

,_.
S)
&

depends on their coefficients: a larger

coefficient means higher importance of the

,_
S

Index

corresponding input. _ _ o
» The gap in the eigenvalues indicates a

» Global SA: 10 important inputs in total separation between active and inactive
subspaces
» Hence there is 1D active subspace

Zhou, C., Shi, Z., Kucherenko, S., & Zhao, H. (2022). A unified approach for global sensitivity
analysis based on active subspace and Kriging. Reliab. Eng. Syst. Saf. 217



100-dimensional quadratic model

» Scatter plot {y;, f(x;)} — univariate dependence — g(y) :

2.0x10° | | :
O Initial training sample
Adaptively added sample
—— Kriging model

1.5x10°
>1.0x10° [~

5.0x104'””””’: ””””” 7

0.0

20 15 -10 -05 0.0 05 1.0 15 2.0
Active variable,u

» A metamodel built in 1D active subspace accurately captures the behavior of the full model

» Global SA: model reduction from d=100 to 10D (fixing non important inputs)
» AS: model reduction from d=100 to 1D (rotation of the domain produced by the
eigenvector W;)



Computation of Sobol Sl using 1D metamodel in AS

1.0

#— DGSM by proposed approach
DGSM by MCS
—— Activity score by by proposed approach(1D)
@ Activity score by by proposed approach(2D)
0.8} -- Activity score by MCS L
Total effect index by proposed approach(1D)
Total effect index by proposed approach(2D)

B2 Total effect index by MCS

B Total effect index by Kriging in the whole input space

06F f

Normalized sensitivity index

5 15 25 3 45 55 65 75 85 95
Most important input variables, X;

» Accurate computation of 100 Sobol Sl in 100 dim model using only 1D
metamodel in AS



VI. Shapley Values

SHAP

o N

Derivative-base Derivative-base
Sensitivity Shapley value
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DGSM DerSHAP




Shapley Values

N = {1,2, ...,n} be the set of players (features).
val(u) be the payoff (value function) for a subset u € N.

¢; be the Shapley value for player i.

Properties of Shapley Values ¢; :
Efficiency: z ¢; = val(N)

IEN
Symmetry: If val(u U {i}) = val(u U {j}) for vu € N \ {i, }, then ¢; = o
Dummy Player: If val(u U {i}) = val(u) for Vu S N, then ¢p; = 0
Additivity: Forgamesvandw, ¢;(v+w) = ¢;(v) + ¢;(w) forVi € N

' (IN| — — 1)!
o=y ||N||!u| ! (val(u u {i}) — val(w))

UCSN\{i}

43



Sobol’ indices and Shapley value

Owen (2014), Owen & Prieur (2017) used the main effect Sobol’ index to define value
function as val(u) = S,
then the Shapley value for a player i:

[ul! (IN| = u| —1)!

uCN\{i} '

Theorem*:

D
¢i — Zugl:n,iEu —,

|u|
Then

S; < ¢; < Skt

*Owen, A. B. (2014). SIAM/ASA Journal on Uncertainty Quantification, 2(1), 245-251.

Owen, A. B., & Prieur, C. (2017). SIAM/ASA Journal on Uncertainty Quantification, 5(1), 986-1002.
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SHAP (SHapley Additive exPlanations) and
Explainable Al (XAl)

In machine learning, SHAP is used to explain the model output.

It treats the model's prediction as the "payoff" and the features as the "players.

Additive Contribution of Features in model's prediction:

M
FO)=o+ ) &
i=1

® (b, is the baseline prediction (the average prediction over the dataset),
e (; is the Shapley value for the feature

e M isthe total number of features.

45



Limitations of SHAP

1.Computational Complexity:
requires evaluating all possible subsets of features: 2M evaluations

2.Assumption of Feature Independence:
assumes that features are independent, which may not hold in real-world

datasets.
3.Handling of Higher-Order Interactions:
struggles to capture complex interactions between features, especially in

high-dimensional data

4. Unreliable outcomes
may assign excessive importance to improbable instances.

46



Derivative-based Shapley value (DerSHAP)

e Model f(x), x = (xq, -, xn)
e Denote the partial derivative of f(x) with respect to x; as

of (x)
axi

Define the derivative-based importance of subset u:

valy =) ) [E[p@fa0f]| =

IEUu jEu,j=i
z [E[a(i)fZ] 4 2 |[E[a(i)fa(j)f]|
i€Eu LjeEu,j>i
=z a;(d) + z [E[0® Fa0)f]|
i€u i,jeu,j>i

Here ¥, E[0Wf?] = Yicuai(n) = Yiewvi, a; is the activity scores.

Duan H, Okten G. Derivative-based Shapley value for global sensitivity analysis and
machine learning explainability. Int. J. for Uncertainty Quant. 2025;15(1).
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Derivative-based Shapley value: DerSHAP

DGSM-based importance of subset u:

val(u) = ZiEu ZjEu,jZilE[a(i)fa(j)f]l

=ZIE[6(i)f2]+ z [E[0®@ a0 ]|

lEU LjEW,j>I1

Theorem 1. The Shapley value for the derivative-based importance function:

6= B[00 +5 Y [El0®ro0r]
j=1,j#i
d
1 : :
=vity ). [E[P©Orat]]

j=1,j%i

DerSHAP generalizes DGSM by introducing interaction terms between partial derivatives while
adopting a Shapley value framework

DerSHAP complexity using MC is O (nN) vrs SHAP - 2™ terms.

DerSHAP can be used with dependent variables *®



Boston housing data

Target to predict: MEDV (median value of owner-occupied homes in $1000’s)

Input features: 8 input features (socioeconomic & property characteristics)
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Figure. DerSHAP and KernelSHAP values for independent inputs

DerSHAP works with dependent data; KernelSHAP does not

Computational time comparison

| Model | Method | Time |
DerSHAP 6.81 sec.
_ KernelSHAP 3.7 hours

High

Feature value
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Other DGSM extensions

M. Lamboni, S. Kucherenko (2021) Multivariate sensitivity analysis and derivative-based global
sensitivity measures with dependent variables, Reliab Eng Syst Saf 212 107519

M. Lamboni, S. Kucherenko (2025) Active subspace methods and derivative-based Shapley' effects
for functions with non-independent variables, submitted to Math. and Comp. in Simulation.

SAMO 2025 Presenations:

Giray Okten, Ruilong Yue, Global activity scores.

Mayer Patricia, Derivative-based Global Sensitivify Analysis for Energy System Optimization Models
via Implicit Differentiation

Yang Jiannan [et al.], Derivative-based upper bound for entropic total effect sensitivity with high
dimensional and dependent inputs

Lithen Nora, Gradient-enhanced surrogate modelling and sensitivity analysis with chaos expansions



DGSM Software

Derivative-based measures in Matlab (Kucherenko and Song, 2014):

GUI driven global sensitivity analysis and metamodeling software SobolGSA
(Kucherenko and Zaccheus, 2025).

SALib - an open-source Python library for Sensitivity Analysis (Herman and Usher (2017))

Package ‘sensitivity’ (looss et al. (2020))


https://ec.europa.eu/jrc/en/samo/simlab
http://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/
http://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/
https://github.com/SALib/SALib
https://cran.r-project.org/web/packages/sensitivity/

Summary

DGSM bounds provide good estimates of St°t at much lower
computational cost.

Small DGSM values guarantee small S*°t, making DGSM effective for fixing.

Bounds can be computed via MC/QMC using partial derivatives, or
efficiently obtained via adjoint AD..

Low computational cost of DGSM makes them attractive for use in
Derivative-based Shapley value, active subspaces and other applications
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