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Context: Rare event analysis

Blackbox systemd random entries System response

φ : Rd → R φ(Y )Y ∼ f initial density

▶ Y ∼ f = N(0, I) standard Gaussian in dimension d

▶ A = {y ∈ Rd : φ(y) ≥ 0}, measurable φ : Rd 7→ R
▶ Estimate

p = Pf (Y ∈ A) =

∫
1 (y ∈ A) f(y) dy

in high dimension: d → +∞
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Monte Carlo

▶ Monte Carlo (MC) estimator: N samples

(Yi)
iid∼ f initial density

p̂MC =
1

N

N∑
i=1

1 (Yi ∈ A) , E(p̂MC) = p

▶ Choice of N : usually based on coefficient of variation
(fluctuation around the mean)

cov(p̂MC) :=

√
Varf (p̂MC)

Ef (p̂MC)
=

√
1− p√
Np

≈ 1√
Np

cov of 10% ⇒ N = 109 if p ∼ 10−7

1 ms per sample ⇒ 11 days to generate 109 samples
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Importance sampling
▶ Auxiliary density g s.t. g(x) = 0 ⇒ 1 (x ∈ A) f(x) = 0

p =

∫
Rd

1 (x ∈ A)
f(x)

g(x)
g(x) dx = Eg

(
1 (X ∈ A)

f(X)

g(X)

)
▶ Importance sampling (IS): N samples Xi

iid∼ g

p̂g =
1

N

N∑
i=1

1 (Xi ∈ A)
f(Xi)

g(Xi)
, E(p̂g) = p

Ideal density s.t. p̂g = p constant estimator :

f |A =
1 (. ∈ A) f

p
(conditional law Y |φ(Y ) ≥ 0)

p unknown ⇒ f |A unusable as auxiliary density!
But a good choice of g: Variance reduction compared to p̂MC
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Gaussian setting
Search gA among Gaussians which minimizes Kullback-Leibler
(KL) divergence with f |A, D(f |A||·):

min
g=N(µ,Σ)

D(f |A||g) = min
g=N(µ,Σ)

Ef |A

(
log

(
f |A(X)

g(X)

))

▶ Solution: gA “Optimal Gaussian”:
Same mean and covariance matrix as
f |A

gA = N(µA,ΣA);

µA = Ef |A(X), ΣA = Varf |A(X)

▶ µA et ΣA unknown ⇒ Estimation by
Adaptive Importance Sampling

▶ Problem becomes vector and matrix
estimation in high dimension
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Cross-Entropy scheme (single Gaussian) [RK04]
µA and ΣA unknown ⇒ Estimation by Adaptive Importance
Sampling
Cross-Entropy (CE): adaptive scheme which learns gA iteratively.
Learning step: uses n samples per iteration

At iteration t:
1 n samples (Xi)

iid∼ ĝt

2 ρn highest (φ(Xi)) ⇒ q̂(⌊(1−ρ)n⌋)

3 Ât = {y ∈ Rd : φ(y) ≥ q̂(⌊(1−ρ)n⌋)}
4 Estimate Ef (Y |Y ∈ Ât) and

Varf (Y |Y ∈ Ât) ⇒ µ̂t+1, Σ̂t+1

5 ĝt+1 = N(µ̂t+1, Σ̂t+1)

Stopping criterion q̂(⌊(1−ρ)n⌋) > 0 attained at some t∗: estimate p

N samples (Xi)
iid∼ ĝt∗ , p̂CE =

1

N

N∑
i=1

1 (Xi ∈ A)
f(Xi)

ĝt∗(Xi) 6/24
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Covariance matrix estimators in CE and CE with projection

▶ In CE at step t, estimation of Varf (Y |Y ∈ Ât) with
(Xi)i=1...n ∼ ĝt = N(µ̂t, Σ̂t),

Σ̂t+1 =
1

n p̂t

n∑
i=1

1
(
Xi ∈ Ât

) f(Xi)

ĝt(Xi)
(Xi− µ̂t+1)(Xi− µ̂t+1)

⊤

▶ This is an importance sampling estimator of covariance
matrix

▶ CE with projection [Uri+21; EMS21; EMS24]: Fix r ≥ 1,
(vk, k = 1, . . . , r) orthonormal family, and use instead

Σ̂proj
t+1 =

r∑
k=1

(λk − 1)vkv
⊤
k + I, λk = v⊤k Σ̂t+1vk

These matrices = culprit for bad performance of CE in high
dimension ?
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Bad performance of CE in high dimension

In low dimensions, CE = popular algorithm for rare event estimation
In high dimensions, CE does not converge
Example: φ(y) =

∑d
j=1 y(j)− 5

√
d, p ∼ 10−7, plot |p̂CE − p|/p

▶ To estimate p of order 10−7,
even d = 10 does not work
well

▶ This inspires theoretical
analysis of CE in high
dimension (d → +∞)
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Consistency of CE in high dimension

Joint work with F. Simatos, Yonatan Shadmi (Imperial College)
(to appear in the Annals of Applied Probability [BSSar])
Setting: d → +∞. n: no of samples per iteration of CE

N : no of IS samples to estimate p
Central assumption: infd p > 0 + Technical assumptions
Theorem

∃κ > 0 : n ≫ dκ =⇒ p̂CE

p
⇒ 1 ∀N → ∞

n that scales polynomially with d suffices for the p̂CE to be
consistent for any N → ∞ (no minimal growth rate with d).

Why is it interesting? Popular folklore for IS:
N ≫ exp(d) samples are needed to have a consistent

estimator [BBL08]
What we have proven:

by learning gA with CE beforehand using n ≫ dκ, p̂CE is consistent
without needing N ≫ exp(d). 9/24
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Some remarks
1 In our knowledge, first result of the consistency of CE when

d → +∞

2 if d is fixed and n → ∞, CLT available in [PD18]

3 for ĝt+1 = N(µ̂t+1, Σ̂t+1), n ≫ dκ, we conjecture that κ is
linked to 1/λmin(Σ̂t): cf. the rest of the talk

4 Similar results on more recent variants of CE: CE with
projection [Uri+21; EMS22; EMS24] and improved
CE [PGS19] can be obtained

5 The assumption infd p > 0 is already considered for theoretical
analysis in [AB03; CD18; CHR22]. Example of applications
in [Uri+21; EPS24].
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The importance sampling covariance matrix estimators

▶ Recall in CE with projection,

Σ̂proj
t+1 =

r∑
k=1

(λk − 1)vkv
⊤
k + I, λk = v⊤k Σ̂t+1vk

▶ Aim: confirm the conjecture that in n ≫ dκ, κ is linked to
1/λmin(Σ̂

proj
t ). Check also the necessity of n ≫ dκ.

Strategy: model Σ̂t+1 as a random matrix to use recent
concentration inequalities from [BH24]
Joint work with F. Simatos, J. Morio (Preprint soon™)
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Simplest matrix model: identity estimate
Covariance matrix estimation (Wishart)

Î =
1

n

n∑
i=1

YiY
⊤
i :=

1

n
Y Y ⊤,

Yi
iid∼ f = N(0, I) or Y ij

iid∼ N(0, 1)

Classical result d → +∞
[BY93] If d/n → c ∈]0, 1],
▶ λmax(Î) → (1 +

√
c)2 a.s.

▶ λmin(Î) → (1−
√
c)2 a.s.

Universality [BY93]: same result holds for iid Y ij if

E(Y ij) = 0, Var(Y ij) = 1 and E(Y 4
ij) < +∞.

Covariance matrix estimation by importance sampling

Î =
1

n

n∑
i=1

f(Xi)

g(Xi)
XiX

⊤
i ,

Xi ∼ g = N(0,Σ) iid

Universality inapplicable if
f(X)
g(X) does not have finite variance
typically the case in importance
sampling
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Identity estimate: result

Fix r ≥ 1, λ1 ≤ . . . ≤ λr ∈]0,+∞[,
(vk, k = 1, . . . , r) orthonormal family, take g = N(0,Σ) with

Σ =

r∑
k=1

(λk − 1)vkv
⊤
k + I. Consider Î =

1

n

n∑
i=1

f(Xi)

g(Xi)
XiX

⊤
i .

Theorem (d → +∞): If n = dκ for κ > 0, then
▶ if κ > 1/λ1, then λmax(Î), λmin(Î) → 1 in L1

▶ if κ < 1/λ1, then λmax(Î) ⇒ +∞ (λ1 = λmin(Σ) for g)
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Model with limited dependency
Take g = N(0,Σ), Σ =

∑r
k=1(λk − 1)eke

⊤
k + I (canonical basis).

Consider Σ̂A =
1

np

n∑
i=1

f(Xi)

g(Xi)
1 (Xi ∈ A)XiX

⊤
i (ignoring the mean)

Theorem (d → +∞):
Assume that infd p > 0. Then supd λmax(ΣA) < +∞.
If 1 (Xi ∈ A) does not depend on the first r coordinates of Xi,
and if n = dκ for κ > 0, then
▶ if κ > 1/λ1, then λmax(Σ̂A)/λmax(ΣA) → 1 in L1

if κ > 1/λ1, then λmin(Σ̂A)/λmin(ΣA) → 1 in L1

▶ if κ < 1/λ1, then λmax(Σ̂A) ⇒ +∞
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Takeaway from theoretical results

▶ λmin(Σ) of g = N(0,Σ) is crucial to assure that λmax(Σ̂A)
does not tend to infinity

▶ At iteration t of CE-proj, we expect similar phenomenon:
λmin(Σ̂

proj
t ) is critical to assure a good estimation of Σ̂t+1

Expected phenomenon:

n ≪ d1/λ1(Σ̂
proj
t )λmin(Σ̂

proj
t ) small λmax(Σ̂t+1) large

▶ Too large λmax(Σ̂t+1) degrades estimation of p since
λmax(Σ̂t+1) ⇒ +∞ =⇒ D(f |A||N(µA, Σ̂t+1)) ⇒ +∞
and [CD18]: required sample size to estimate p using g:
N ≃ eD(f |A||g)

▶ Numerical verification on some test cases
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Classical hyperplane test case

A =

x ∈ Rd :

d∑
j=1

x(j) ≥ 5
√
d

 , d = 100, p = 2.87 · 10−7

µA = Ef |A(X), ΣA = Varf |A(X)
optimal parameters

1 CE-eig1: eigenvector associated to the
smallest eigenvalue of Σ̂t [EMS24],

2 CE-µ̂t: the direction of the estimated
mean during each iteration t,
µ̂t/∥µ̂t∥ [EMS21]

3 CE-µA: the theoretical mean
µA/∥µA∥ [EMS21] Fitted violin plot of |p̂− p|/p over

200 runs
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Extreme eigenvalues across the iterations
Smallest eigs λmin(Σ̂

proj
t ) Largest eigs λmax(Σ̂

proj
t )

▶ It seems that larger smallest eigenvalues correlate to
the better estimation of p

17/24



Plotting the extreme eigenvalues of two types of matrices

▶ In CE at step t, estimation of Varf (Y |Y ∈ Ât) with
(Xi)i=1...n ∼ ĝt = N(µ̂t, Σ̂t),

Σ̂t+1 =
1

n p̂t

n∑
i=1

1
(
Xi ∈ Ât

) f(Xi)

ĝt(Xi)
(Xi− µ̂t+1)(Xi− µ̂t+1)

⊤

We call the covariance matrix of CE before projection

▶ Projection: Given (vk, k = 1, . . . , r) orthonormal family of
size r, construct

Σ̂proj
t+1 =

r∑
k=1

(λk − 1)vkv
⊤
k + I, λk = v⊤k Σ̂t+1vk

We call the covariance matrix of CE after projection
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Effect of projection
Smallest eigs λmin(Σ̂t), λmin(Σ̂

proj
t ) Largest eigs λmin(Σ̂t), λmax(Σ̂

proj
t )

▶ If smallest eigenvalues collapse, the largest
eigenvalues before projection become too large

▶ Projection usually sets largest eigenvalue to 1, and
increases the smallest eigenvalues 19/24



Large portfolio losses example [BJZ08]

A =

x ∈ Rd :

d∑
j=3

1
(
ϕ(x(1), x(2), x(j)) ≥ 0.5

√
d
)
− 0.25d− 0.1

 ,

where for any (x1, x2, x3) ∈ R3,

ϕ(x1, x2, x3) =
(
0.25x1 + 3(1− 0.252)1/2x3

)√
F−1
Γ(6,6) (FN (x2))

with FΓ(6,6) the cdf of the Gamma distribution.
d = 334, p = 1.79 · 10−6 (Monte Carlo with 5 · 1010 samples)

Improved cross-entropy (iCE) [PGS19]
1 iCE-proj-eig1: eigenvector associated to

its smallest eigenvalue [EMS24],
2 iCE-proj-µ̂t: the direction of the estimated

mean during each iteration t,
µ̂t/∥µ̂t∥ [EMS21]
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Extreme eigenvalues across the iterations
Smallest eigs λmin(Σ̂t), λmin(Σ̂

proj
t ) Largest eigs λmax(Σ̂t), λmax(Σ̂

proj
t )

▶ Empirically, it seems that larger smallest eigenvalues
translate into a better performance

▶ This is not always the case: cf. next example
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Quadratic example

A =

x ∈ Rd : −4− 5

4
(x(1)− x(2))2 +

1√
d

d∑
j=1

x(j) ≥ 0


d = 334, p = 6.62 · 10−6

iCE-proj-FIS:
Failure-informed subspace
constructed using the
gradient ∇φ [Uri+21]

Smallest eigs λmin(Σ̂
proj
t )

Similar performance with iCE-proj-µ̂t but very small smallest
eigenvalues: likely due to FIS = high quality projections
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Numerical takeaways

1 We observed through numerical studies the phenomenon

n ≪ d1/λ1(Σ̂
proj
t )λmin(Σ̂

proj
t ) small λmax(Σ̂t+1) large

2 In most cases, for runs with a bad estimation of p, small
λmin(Σ̂

proj
t )’s are observed

3 Our results suggest to regularize the eigenvalues of the
covariance matrix estimator
▶ Related to other work presented in SIAM-UQ24: Improved

high-dimensional covariance matrix estimation in CE scheme
(joint work with J. Morio, F. Simatos)
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Perspective and advertisements

Perspective
▶ λmin(Σ̂t) is not the entire story: iCE-proj-FIS can have small

smallest eigenvalues but end up with a good estimation of p
▶ Influence on the choice of direction of projections not captured

by the theoretical results
Advertisements

1 Upcoming work: interacting Langevin dynamics for rare event
estimation (joint work with Simon Weissmann (University of
Mannheim), F. Simatos, J. Morio) will be presented in
ENUMATH 2025 @ Heidelberg (Preprint soon™)

2 Gladly appreciate post-doc opportunities
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