Some contributions on the adaptive importance sampling scheme 'cross-entropy' in high dimension

Jason Beh^{1,2,3} Florian Simatos^{1,3} Jérôme Morio^{2,3}

¹ISAE-SUPAERO ²ONERA ³Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France

22 April 2025, Grenoble

$$p = \mathbb{P}_f \left(Y \in A \right) = \int \mathbb{1} \left(y \in A \right) f(y) \, \mathrm{d}y$$

in high dimension: $d \to +\infty$

Monte Carlo

• Monte Carlo (MC) estimator: N samples $(Y_i) \stackrel{\text{iid}}{\sim} f$ initial density

$$\hat{p}_{\mathsf{MC}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left(Y_i \in A \right), \quad \mathbb{E}(\hat{p}_{\mathsf{MC}}) = p$$

 Choice of N : usually based on coefficient of variation (fluctuation around the mean)

$$\operatorname{cov}(\hat{p}_{\mathsf{MC}}) := \frac{\sqrt{\mathbb{V}\mathsf{ar}_f(\hat{p}_{\mathsf{MC}})}}{\mathbb{E}_f(\hat{p}_{\mathsf{MC}})} = \frac{\sqrt{1-p}}{\sqrt{Np}} \approx \frac{1}{\sqrt{Np}}$$

cov of $10\% \Rightarrow N = 10^9$ if $p \sim 10^{-7}$ 1 ms per sample $\Rightarrow 11$ days to generate 10^9 samples

Importance sampling

• Auxiliary density g s.t. $g(x) = 0 \Rightarrow \mathbb{1} (x \in A) f(x) = 0$

$$p = \int_{\mathbb{R}^d} \mathbb{1} \left(x \in A \right) \frac{f(x)}{g(x)} g(x) \, \mathrm{d}x = \mathbb{E}_g \left(\mathbb{1} \left(X \in A \right) \frac{f(X)}{g(X)} \right)$$

• Importance sampling (IS): N samples $X_i \stackrel{\text{iid}}{\sim} g$

$$\hat{p}_g = \frac{1}{N} \sum_{i=1}^N \mathbb{1} \left(X_i \in A \right) \frac{f(X_i)}{g(X_i)}, \ \mathbb{E}(\hat{p}_g) = p$$

Ideal density s.t. $\hat{p}_g = p$ constant estimator :

$$f|_A = \frac{\mathbb{1}(. \in A) f}{p}$$
 (conditional law $Y|\varphi(Y) \ge 0$)

p unknown $\Rightarrow f|_A$ unusable as auxiliary density! But a good choice of g: Variance reduction compared to \hat{p}_{MC}

Importance sampling

• Auxiliary density g s.t. $g(x) = 0 \Rightarrow \mathbb{1} (x \in A) f(x) = 0$

$$p = \int_{\mathbb{R}^d} \mathbb{1} \left(x \in A \right) \frac{f(x)}{g(x)} g(x) \, \mathrm{d}x = \mathbb{E}_g \left(\mathbb{1} \left(X \in A \right) \frac{f(X)}{g(X)} \right)$$

• Importance sampling (IS): N samples $X_i \stackrel{\text{iid}}{\sim} g$

$$\hat{p}_g = \frac{1}{N} \sum_{i=1}^N \mathbb{1} \left(X_i \in A \right) \frac{f(X_i)}{g(X_i)}, \ \mathbb{E}(\hat{p}_g) = p$$

Ideal density s.t. $\hat{p}_g = p$ constant estimator :

$$f|_A = \frac{\mathbbm{1} (. \in A) f}{p}$$
 (conditional law $Y|\varphi(Y) \ge 0$)

p unknown $\Rightarrow f|_A$ unusable as auxiliary density! But a good choice of g: Variance reduction compared to \hat{p}_{MC}

Gaussian setting

Search g_A among **Gaussians** which minimizes Kullback-Leibler (KL) divergence with $f|_A$, $D(f|_A||\cdot)$:

$$\min_{g=N(\mu,\Sigma)} D(f|_A||g) = \min_{g=N(\mu,\Sigma)} \mathbb{E}_{f|_A} \left(\log \left(\frac{f|_A(X)}{g(X)} \right) \right)$$

$$g_A = N(\mu_A, \Sigma_A);$$

$$\mu_A = \mathbb{E}_{f|_A}(X), \ \Sigma_A = \mathbb{V}\mathrm{ar}_{f|_A}(X)$$

- μ_A et Σ_A unknown \Rightarrow Estimation by Adaptive Importance Sampling
- Problem becomes vector and matrix estimation in high dimension

Cross-Entropy scheme (single Gaussian) [RK04]

 μ_A and Σ_A unknown \Rightarrow Estimation by Adaptive Importance Sampling

Cross-Entropy (CE): adaptive scheme which learns g_A iteratively. Learning step: uses n samples per iteration

At iteration t: 1 n samples $(X_i) \stackrel{\text{iid}}{\sim} \hat{g}_t$ 2 ρn highest $(\varphi(X_i)) \Rightarrow \hat{q}_{(\lfloor (1-\rho)n \rfloor)}$ 3 $\hat{A}_t = \{y \in \mathbb{R}^d : \varphi(y) \ge \hat{q}_{(\lfloor (1-\rho)n \rfloor)}\}$ 4 Estimate $\mathbb{E}_f(Y|Y \in \hat{A}_t)$ and $\operatorname{Var}_f(Y|Y \in \hat{A}_t) \Rightarrow \hat{\mu}_{t+1}, \hat{\Sigma}_{t+1}$ 5 $\hat{g}_{t+1} = N(\hat{\mu}_{t+1}, \hat{\Sigma}_{t+1})$

Stopping criterion $\hat{q}_{(\lfloor (1-\rho)n \rfloor)} > 0$ attained at some t^* : estimate p

$$N \text{ samples } (X_i) \stackrel{\text{iid}}{\sim} \hat{g}_{t^*}, \ \hat{p}_{\mathsf{CE}} = \frac{1}{N} \sum_{i=1}^N \mathbbm{1} (X_i \in A) \frac{f(X_i)}{\hat{g}_{t^*}(X_i)}$$

6/24

Cross-Entropy scheme (single Gaussian) [RK04]

 μ_A and Σ_A unknown \Rightarrow Estimation by Adaptive Importance Sampling

Cross-Entropy (CE): adaptive scheme which learns g_A iteratively. Learning step: uses n samples per iteration

At iteration t: 1 n samples $(X_i) \stackrel{\text{iid}}{\sim} \hat{g}_t$ 2 ρn highest $(\varphi(X_i)) \Rightarrow \hat{q}_{(\lfloor (1-\rho)n \rfloor)}$ 3 $\hat{A}_t = \{y \in \mathbb{R}^d : \varphi(y) \ge \hat{q}_{(\lfloor (1-\rho)n \rfloor)}\}$ 4 Estimate $\mathbb{E}_f(Y|Y \in \hat{A}_t)$ and $\mathbb{V}ar_f(Y|Y \in \hat{A}_t) \Rightarrow \hat{\mu}_{t+1}, \hat{\Sigma}_{t+1}$ 5 $\hat{g}_{t+1} = N(\hat{\mu}_{t+1}, \hat{\Sigma}_{t+1})$

Stopping criterion $\hat{q}_{(\lfloor (1-\rho)n \rfloor)}>0$ attained at some $t^*:$ estimate p

$$N \text{ samples } (X_i) \stackrel{\text{iid}}{\sim} \hat{g}_{t^*}, \ \hat{p}_{\mathsf{CE}} = \frac{1}{N} \sum_{i=1}^N \mathbb{1} (X_i \in A) \frac{f(X_i)}{\hat{g}_{t^*}(X_i)}$$
 6/24

Covariance matrix estimators in CE and CE with projection

In CE at step t, estimation of
$$\operatorname{Var}_f(Y|Y \in \hat{A}_t)$$
 with
 $(X_i)_{i=1\dots n} \sim \hat{g}_t = N(\hat{\mu}_t, \hat{\Sigma}_t),$
 $\hat{\Sigma}_{t+1} = \frac{1}{n \ \hat{p}_t} \sum_{i=1}^n \mathbb{1}\left(X_i \in \hat{A}_t\right) \frac{f(X_i)}{\hat{g}_t(X_i)} (X_i - \hat{\mu}_{t+1}) (X_i - \hat{\mu}_{t+1})$

- This is an importance sampling estimator of covariance matrix
- ▶ CE with projection [Uri+21; EMS21; EMS24]: Fix $r \ge 1$, $(v_k, k = 1, ..., r)$ orthonormal family, and use instead

$$\hat{\Sigma}_{t+1}^{\text{proj}} = \sum_{k=1}^{r} (\lambda_k - 1) v_k v_k^{\top} + I, \lambda_k = v_k^{\top} \hat{\Sigma}_{t+1} v_k$$

These matrices = culprit for bad performance of CE in high dimension ?

)⊤

Bad performance of CE in high dimension

In low dimensions, CE = popular algorithm for rare event estimation In high dimensions, CE does not converge Example: $\varphi(y) = \sum_{j=1}^{d} y(j) - 5\sqrt{d}, \ p \sim 10^{-7}$, plot $|\hat{p}_{\mathsf{CE}} - p|/p$

Consistency of CE in high dimension

Joint work with F. Simatos, Yonatan Shadmi (Imperial College) (to appear in *the Annals of Applied Probability* [BSSar]) Setting: $d \to +\infty$. *n*: no of samples per iteration of CE *N*: no of IS samples to estimate *p*

Central assumption: $\inf_d p > 0$ + Technical assumptions Theorem

$$\exists \kappa > 0: \ n \gg d^{\kappa} \Longrightarrow \frac{\hat{p}_{\mathsf{CE}}}{p} \Rightarrow 1 \ \forall N \to \infty$$

n that scales polynomially with d suffices for the \hat{p}_{CE} to be consistent for any $N \to \infty$ (no minimal growth rate with d).

Why is it interesting? Popular folklore for IS: $N \gg \exp(d)$ samples are needed to have a consistent estimator [BBL08] What we have proven: y learning g_A with CE beforehand using $n \gg d^{\kappa}$, \hat{p}_{CE} is consistent without needing $N \gg \exp(d)$. 9/22

Consistency of CE in high dimension

Joint work with F. Simatos, Yonatan Shadmi (Imperial College) (to appear in *the Annals of Applied Probability* [BSSar]) Setting: $d \to +\infty$. *n*: no of samples per iteration of CE *N*: no of IS samples to estimate *p*

Central assumption: $\inf_d p > 0$ + Technical assumptions Theorem

$$\exists \kappa > 0: \ n \gg d^{\kappa} \Longrightarrow \frac{\hat{p}_{\mathsf{CE}}}{p} \Rightarrow 1 \ \forall N \to \infty$$

n that scales polynomially with d suffices for the \hat{p}_{CE} to be consistent for any $N \to \infty$ (no minimal growth rate with d).

 $\begin{array}{l} & \underset{N \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \gg \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are needed to have a consistent} \\ & \underset{R \longrightarrow \exp(d) \text{ samples are neede$

Some remarks

- \blacksquare In our knowledge, first result of the consistency of CE when $d \to +\infty$
- 2 if d is fixed and $n \to \infty$, CLT available in [PD18]
- **3** for $\hat{g}_{t+1} = N(\hat{\mu}_{t+1}, \hat{\Sigma}_{t+1})$, $n \gg d^{\kappa}$, we conjecture that κ is linked to $1/\lambda_{\min}(\hat{\Sigma}_t)$: cf. the rest of the talk
- Similar results on more recent variants of CE: CE with projection [Uri+21; EMS22; EMS24] and improved CE [PGS19] can be obtained
- **5** The assumption $\inf_d p > 0$ is already considered for theoretical analysis in [AB03; CD18; CHR22]. Example of applications in [Uri+21; EPS24].

The importance sampling covariance matrix estimators

Recall in CE with projection,

$$\hat{\Sigma}_{t+1}^{\text{proj}} = \sum_{k=1}^{r} (\lambda_k - 1) v_k v_k^\top + I, \lambda_k = v_k^\top \hat{\Sigma}_{t+1} v_k$$

• Aim: confirm the conjecture that in $n \gg d^{\kappa}$, κ is linked to $1/\lambda_{\min}(\hat{\Sigma}_t^{\text{proj}})$. Check also the necessity of $n \gg d^{\kappa}$.

Strategy: model $\hat{\Sigma}_{t+1}$ as a random matrix to use recent concentration inequalities from [BH24] Joint work with F. Simatos, J. Morio (Preprint soonTM)

11/24

Simplest matrix model: identity estimate

Covariance matrix estimation (Wishart)

$$\begin{split} \hat{I} &= \frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{\top} := \frac{1}{n} \boldsymbol{Y} \boldsymbol{Y}^{\top}, \\ Y_{i} \stackrel{\text{iid}}{\sim} f &= N(0, I) \text{ or } \boldsymbol{Y}_{ij} \stackrel{\text{iid}}{\sim} N(0, 1) \end{split} \begin{array}{l} \text{Classical result } d \to +\infty \\ [\texttt{BY93}] \text{ If } d/n \to c \in]0, 1], \\ &\blacktriangleright \lambda_{\max}(\hat{I}) \to (1 + \sqrt{c})^{2} \text{ a.s.} \\ &\triangleright \lambda_{\min}(\hat{I}) \to (1 - \sqrt{c})^{2} \text{ a.s.} \\ & \underline{\text{Universality}} \text{ [BY93]: same result holds for iid } \boldsymbol{Y}_{ij} \text{ if } \end{split}$$

$$\mathbb{E}(\boldsymbol{Y}_{ij}) = 0, \ \mathbb{V}ar(\boldsymbol{Y}_{ij}) = 1 \text{ and } \mathbb{E}(\boldsymbol{Y}_{ij}^4) < +\infty.$$

Covariance matrix estimation by importance sampling

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{g(X_i)} X_i X_i^{\top},$$
$$X_i \sim q = N(0, \Sigma) \text{ iid}$$

Universality inapplicable if $\frac{f(X)}{g(X)}$ does not have finite variance typically the case in importance sampling

Simplest matrix model: identity estimate

Covariance matrix estimation (Wishart)

$$\begin{split} \hat{I} &= \frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{\top} := \frac{1}{n} \boldsymbol{Y} \boldsymbol{Y}^{\top}, \\ Y_{i} \stackrel{\text{iid}}{\sim} f &= N(0, I) \text{ or } \boldsymbol{Y}_{ij} \stackrel{\text{iid}}{\sim} N(0, 1) \end{split} \begin{array}{l} \text{Classical result } d \to +\infty \\ [\texttt{BY93}] \text{ If } d/n \to c \in]0, 1], \\ \boldsymbol{\triangleright} \lambda_{\max}(\hat{I}) \to (1 + \sqrt{c})^{2} \text{ a.s.} \\ \boldsymbol{\triangleright} \lambda_{\min}(\hat{I}) \to (1 - \sqrt{c})^{2} \text{ a.s.} \\ \text{Universality [BY93]: same result holds for iid } \boldsymbol{Y}_{ij} \text{ if } \end{split}$$

$$\mathbb{E}(\boldsymbol{Y}_{ij}) = 0, \ \mathbb{V}ar(\boldsymbol{Y}_{ij}) = 1 \text{ and } \mathbb{E}(\boldsymbol{Y}_{ij}^4) < +\infty.$$

Covariance matrix estimation by importance sampling

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{g(X_i)} X_i X_i^{\top},$$
$$X_i \sim g = N(0, \Sigma) \text{ iid}$$

Universality inapplicable if $\frac{f(X)}{g(X)}$ does not have finite variance typically the case in importance sampling

Identity estimate: result

Fix
$$r \ge 1$$
, $\lambda_1 \le \ldots \le \lambda_r \in]0, +\infty[$,
 $(v_k, k = 1, \ldots, r)$ orthonormal family, take $g = N(0, \Sigma)$ with
 $\Sigma = \sum_{k=1}^r (\lambda_k - 1) v_k v_k^\top + I$. Consider $\hat{I} = \frac{1}{n} \sum_{i=1}^n \frac{f(X_i)}{g(X_i)} X_i X_i^\top$.
Theorem $(d \to +\infty)$: If $n = d^{\kappa}$ for $\kappa > 0$, then
 \triangleright if $\kappa > 1/\lambda_1$, then $\lambda_{\max}(\hat{I}), \lambda_{\min}(\hat{I}) \to 1$ in L_1
 \triangleright if $\kappa < 1/\lambda_1$, then $\lambda_{\max}(\hat{I}) \Rightarrow +\infty$ $(\lambda_1 = \lambda_{\min}(\Sigma)$ for $g)$

13/24

Model with limited dependency

Take
$$g = N(0, \Sigma)$$
, $\Sigma = \sum_{k=1}^{r} (\lambda_k - 1) e_k e_k^{\top} + I$ (canonical basis).
Consider $\hat{\Sigma}_A = \frac{1}{np} \sum_{i=1}^{n} \frac{f(X_i)}{g(X_i)} \mathbb{1} (X_i \in A) X_i X_i^{\top}$ (ignoring the mean)
Theorem $(d \to +\infty)$:
Assume that $\inf_d p > 0$. Then $\sup_d \lambda_{\max}(\Sigma_A) < +\infty$.
If $\mathbb{1} (X_i \in A)$ does not depend on the first r coordinates of X_i ,
and if $n = d^{\kappa}$ for $\kappa > 0$, then
 \blacktriangleright if $\kappa > 1/\lambda_1$, then $\lambda_{\max}(\hat{\Sigma}_A)/\lambda_{\max}(\Sigma_A) \to 1$ in \mathbb{L}_1
 $\lambda_{\min}(\hat{\Sigma}_A)/\lambda_{\min}(\Sigma_A) \to 1$ in \mathbb{L}_1
 \downarrow if $\kappa < 1/\lambda_1$, then $\lambda_{\max}(\hat{\Sigma}_A) \Rightarrow +\infty$

14/24

dimension d

Takeaway from theoretical results

λ_{min}(Σ) of g = N(0, Σ) is crucial to assure that λ_{max}(Σ̂_A) does not tend to infinity

• At iteration t of CE-proj, we expect similar phenomenon: $\lambda_{\min}(\hat{\Sigma}_t^{\text{proj}})$ is critical to assure a good estimation of $\hat{\Sigma}_{t+1}$ Expected phenomenon:

$$\lambda_{\min}(\hat{\Sigma}_t^{\text{proj}}) \text{ small} \longrightarrow n \ll d^{1/\lambda_1(\hat{\Sigma}_t^{\text{proj}})} \longrightarrow \lambda_{\max}(\hat{\Sigma}_{t+1}) \text{ large}$$

► Too large $\lambda_{\max}(\hat{\Sigma}_{t+1})$ degrades estimation of p since $\lambda_{\max}(\hat{\Sigma}_{t+1}) \Rightarrow +\infty \Longrightarrow D(f|_A||N(\mu_A, \hat{\Sigma}_{t+1})) \Rightarrow +\infty$ and [CD18]: required sample size to estimate p using g: $N \simeq e^{D(f|_A||g)}$

Numerical verification on some test cases

Classical hyperplane test case

$$A = \left\{ x \in \mathbb{R}^d : \sum_{j=1}^d x(j) \ge 5\sqrt{d} \right\}, \ d = 100, \ p = 2.87 \cdot 10^{-7}$$

$$\mu_A = \mathbb{E}_{f|_A}(X)$$
, $\Sigma_A = \mathbb{V}ar_{f|_A}(X)$ optimal parameters

- 1 CE-eig1: eigenvector associated to the smallest eigenvalue of $\hat{\Sigma}_t$ [EMS24],
- 2 CE-μ̂_t: the direction of the estimated mean during each iteration t, μ̂_t/|μ̂_t|| [EMS21]
- **3** CE- μ_A : the theoretical mean $\mu_A/\|\mu_A\|$ [EMS21]

Fitted violin plot of $|\hat{p}-p|/p$ over $200~{\rm runs}$

Extreme eigenvalues across the iterations

Plotting the extreme eigenvalues of two types of matrices

In CE at step
$$t$$
, estimation of $\mathbb{V}ar_f(Y|Y \in \hat{A}_t)$ with
 $(X_i)_{i=1\dots n} \sim \hat{g}_t = N(\hat{\mu}_t, \hat{\Sigma}_t),$
 $\hat{\Sigma}_{t+1} = \frac{1}{n \ \hat{p}_t} \sum_{i=1}^n \mathbb{1}\left(X_i \in \hat{A}_t\right) \frac{f(X_i)}{\hat{g}_t(X_i)} (X_i - \hat{\mu}_{t+1}) (X_i - \hat{\mu}_{t+1})^\top$

We call the covariance matrix of CE before projection

 Projection: Given (v_k, k = 1,...,r) orthonormal family of size r, construct

$$\hat{\Sigma}_{t+1}^{\text{proj}} = \sum_{k=1}^{r} (\lambda_k - 1) v_k v_k^{\top} + I, \lambda_k = v_k^{\top} \hat{\Sigma}_{t+1} v_k$$

We call the covariance matrix of CE after projection

Effect of projection

Large portfolio losses example [BJZ08]

$$A = \left\{ x \in \mathbb{R}^d : \sum_{j=3}^d \mathbb{1}\left(\phi(x(1), x(2), x(j)) \ge 0.5\sqrt{d}\right) - 0.25d - 0.1 \right\}$$

where for any $(x_1, x_2, x_3) \in \mathbb{R}^3$,

$$\phi(x_1, x_2, x_3) = \left(0.25 \, x_1 + 3(1 - 0.25^2)^{1/2} x_3\right) \sqrt{F_{\Gamma(6,6)}^{-1}(F_N(x_2))}$$

with $F_{\Gamma(6,6)}$ the cdf of the Gamma distribution. d = 334, $p = 1.79 \cdot 10^{-6}$ (Monte Carlo with $5 \cdot 10^{10}$ samples)

Improved cross-entropy (iCE) [PGS19]

- iCE-proj-eig1: eigenvector associated to its smallest eigenvalue [EMS24],
- 2 iCE-proj- $\hat{\mu}_t$: the direction of the estimated mean during each iteration t, $\hat{\mu}_t / \|\hat{\mu}_t\|$ [EMS21]

20/24

Extreme eigenvalues across the iterations

- Empirically, it seems that larger smallest eigenvalues translate into a better performance
- This is not always the case: cf. next example

Quadratic example

$$A = \left\{ x \in \mathbb{R}^d : -4 - \frac{5}{4} (x(1) - x(2))^2 + \frac{1}{\sqrt{d}} \sum_{j=1}^d x(j) \ge 0 \right\}$$

$$d = 334, \, p = 6.62 \cdot 10^{-6}$$

iCE-proj-FIS: Failure-informed subspace constructed using the gradient $\nabla \varphi$ [Uri+21]

Similar performance with iCE-proj- $\hat{\mu}_t$ but very small smallest eigenvalues: likely due to FIS = high quality projections

22/24

Numerical takeaways

1 We observed through numerical studies the phenomenon $\lambda_{\min}(\hat{\Sigma}_t^{\text{proj}}) \text{ small} \longrightarrow n \ll d^{1/\lambda_1(\hat{\Sigma}_t^{\text{proj}})} \longrightarrow \lambda_{\max}(\hat{\Sigma}_{t+1}) \text{ large}$

- 2 In most cases, for runs with a bad estimation of p, small $\lambda_{\min}(\hat{\Sigma}_t^{\rm proj})$'s are observed
- **3** Our results suggest to regularize the eigenvalues of the covariance matrix estimator
 - Related to other work presented in SIAM-UQ24: Improved high-dimensional covariance matrix estimation in CE scheme (joint work with J. Morio, F. Simatos)

Perspective

- λ_{min}(Σ̂_t) is not the entire story: iCE-proj-FIS can have small smallest eigenvalues but end up with a good estimation of p
- Influence on the choice of direction of projections not captured by the theoretical results

Advertisements

- Upcoming work: interacting Langevin dynamics for rare event estimation (joint work with Simon Weissmann (University of Mannheim), F. Simatos, J. Morio) will be presented in ENUMATH 2025 @ Heidelberg (Preprint soon™)
- ② Gladly appreciate post-doc opportunities

References I

[AB03] S. Au and J. Beck. "Important sampling in high dimensions". In: Structural Safety 25.2 (2003), pp. 139–163.

[BBL08] T. Bengtsson, P. Bickel, and B. Li.

"Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems". In: *Institute of Mathematical Statistics Collections*. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008, pp. 316–334.

[BH24]

T. Brailovskaya and R. van Handel. "Universality and Sharp Matrix Concentration Inequalities". In: *Geometric and Functional Analysis* 34.6 (2024), pp. 1734–1838.

References II

- [BJZ08] A. Bassamboo, S. Juneja, and A. Zeevi. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation". In: Operations Research 56.3 (2008), pp. 593–606.
- [BSSar] J. Beh, Y. Shadmi, and F. Simatos. "Insight from the Kullback–Leibler divergence into adaptive importance sampling schemes for rare event analysis in high dimension". In: *The Annals of Applied Probability* (to appear).

[BY93]

Z. D. Bai and Y. Q. Yin. "Limit of the Smallest Eigenvalue of a Large Dimensional Sample Covariance Matrix". In: *The Annals of Probability* 21.3 (1993), pp. 1275–1294.

References III

- [CD18] S. Chatterjee and P. Diaconis. "The sample size required in importance sampling". In: *The Annals of Applied Probability* 28.2 (2018).
- [CHR22] F. Cérou, P. Héas, and M. Rousset. "Entropy minimizing distributions are worst-case optimal importance proposals". In: arXiv preprint (2022). arXiv: 2212.04292 [math.NA].
- [EMS21] M. El Masri, J. Morio, and F. Simatos. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation". In: *Reliability Engineering & System Safety* 216 (2021), p. 107991.

References IV

- [EMS22] M. El Masri, J. Morio, and F. Simatos. "Optimal projection to improve parametric importance sampling in high dimension". In: arXiv preprint (2022). arXiv: 2107.06091 [stat.CO].
- [EMS24] M. El Masri, J. Morio, and F. Simatos. "Optimal Projection for Parametric Importance Sampling in High Dimensions". In: Computo (11, 2024).
- [EPS24] M. Ehre, I. Papaioannou, and D. Straub. "Stein Variational Rare Event Simulation". In: arXiv preprint (2024). arXiv: 2308.04971 [stat.ME].
- [PD18] F. Portier and B. Delyon. "Asymptotic optimality of adaptive importance sampling". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.

References V

- [PGS19] I. Papaioannou, S. Geyer, and D. Straub. "Improved cross entropy-based importance sampling with a flexible mixture model". In: *Reliability Engineering & System Safety* 191 (2019), p. 106564.
- [RK04] R. Y. Rubinstein and D. P. Kroese. The cross entropy method: A unified approach to combinatorial optimization, monte-carlo simulation (information science and statistics). Berlin, Heidelberg: Springer-Verlag, 2004.

[Uri+21] F. Uribe et al. "Cross-Entropy-Based Importance Sampling with Failure-Informed Dimension Reduction for Rare Event Simulation". In: SIAM/ASA Journal on Uncertainty Quantification 9.2 (2021), pp. 818–847.